Skip to content

Commit

Permalink
[MODEL] Qwen Multimodal Support (Qwen-VL / Qwen-VL-Chat) (vllm-projec…
Browse files Browse the repository at this point in the history
…t#8029)

Signed-off-by: Alex-Brooks <[email protected]>
Co-authored-by: DarkLight1337 <[email protected]>
  • Loading branch information
2 people authored and Jeffwan committed Sep 19, 2024
1 parent a15383e commit a0b0a12
Show file tree
Hide file tree
Showing 8 changed files with 1,110 additions and 208 deletions.
5 changes: 5 additions & 0 deletions docs/source/models/supported_models.rst
Original file line number Diff line number Diff line change
Expand Up @@ -242,6 +242,11 @@ Multimodal Language Models
- Image\ :sup:`+`
- :code:`openbmb/MiniCPM-V-2` (see note), :code:`openbmb/MiniCPM-Llama3-V-2_5`, :code:`openbmb/MiniCPM-V-2_6`, etc.
-
* - :code:`QWenLMHeadModel`
- Qwen
- Image
- :code:`Qwen/Qwen-VL`, :code:`Qwen/Qwen-VL-Chat`, etc.
-
* - :code:`UltravoxModel`
- Ultravox
- Audio\ :sup:`E+`
Expand Down
15 changes: 15 additions & 0 deletions examples/offline_inference_vision_language.py
Original file line number Diff line number Diff line change
Expand Up @@ -159,6 +159,20 @@ def run_blip2(question):
return llm, prompt, stop_token_ids


# Qwen
def run_qwen_vl(question):

llm = LLM(
model="Qwen/Qwen-VL",
trust_remote_code=True,
max_num_seqs=5,
)

prompt = f"{question}Picture 1: <img></img>\n"
stop_token_ids = None
return llm, prompt, stop_token_ids


model_example_map = {
"llava": run_llava,
"llava-next": run_llava_next,
Expand All @@ -169,6 +183,7 @@ def run_blip2(question):
"minicpmv": run_minicpmv,
"blip-2": run_blip2,
"internvl_chat": run_internvl,
"qwen_vl": run_qwen_vl,
}


Expand Down
167 changes: 142 additions & 25 deletions tests/models/test_qwen.py
Original file line number Diff line number Diff line change
@@ -1,48 +1,165 @@
from typing import Type
import pathlib
from typing import List, Optional, Type

import pytest

from ..conftest import HfRunner, VllmRunner
from vllm.multimodal.utils import rescale_image_size

from ..conftest import IMAGE_ASSETS, HfRunner, VllmRunner, _ImageAssets
from .utils import check_logprobs_close

models = ["qwen/qwen-vl"]
pytestmark = pytest.mark.vlm

text_only_models = [
"Qwen/Qwen-7B-Chat" # Has no visual component
]

@pytest.mark.parametrize("dtype", ["half"])
@pytest.mark.parametrize("max_tokens", [32])
@pytest.mark.parametrize("num_logprobs", [5])
@pytest.mark.parametrize("model", models)
def test_text_only_qwen_model(
multimodal_models = ["Qwen/Qwen-VL"]

HF_IMAGE_PROMPTS = IMAGE_ASSETS.prompts({
"stop_sign":
"Picture 1: <img></img>\nWhat's the content of the image?: ",
"cherry_blossom":
"Picture 1: <img></img>\nWhat is the season?: ",
})


### Tests for multimodal Qwen models
def run_test(
tmp_path: pathlib.PosixPath,
hf_runner: Type[HfRunner],
vllm_runner: Type[VllmRunner],
example_prompts,
image_assets: _ImageAssets,
model: str,
*,
size_factors: List[float],
dtype: str,
max_tokens: int,
num_logprobs: int,
tensor_parallel_size: int,
distributed_executor_backend: Optional[str] = None,
):
# This test checks language inputs only, since the visual component
# for qwen-vl is still unsupported in VLLM. In the near-future, the
# implementation and this test will be extended to consider
# visual inputs as well.
"""Inference result should be the same between hf and vllm.
All the image fixtures for the test is under tests/images.
For huggingface runner, we provide the PIL images as input.
For vllm runner, we provide MultiModalDataDict objects
and corresponding MultiModalConfig as input.
Note, the text input is also adjusted to abide by vllm contract.
The text output is sanitized to be able to compare with hf.
"""
images = [asset.pil_image for asset in image_assets]

# Export the images to a tempdir and substitute it into the hf prompt;
# the contents between <img>/</img> will be ignored by VLLM, but the
# transformers implementation for the visual transformer parses this to
# reload it in the forward call; the contents are treated as a URL or a
# local path.
for idx, asset in enumerate(image_assets):
image_tmp_path = tmp_path / f"{asset.name}.jpg"
asset.pil_image.save(image_tmp_path)
HF_IMAGE_PROMPTS[idx] = HF_IMAGE_PROMPTS[idx].replace(
"<img></img>", f"<img>{image_tmp_path}</img>")

inputs_per_image = [(
[prompt for _ in size_factors],
[rescale_image_size(image, factor) for factor in size_factors],
) for image, prompt in zip(images, HF_IMAGE_PROMPTS)]

# NOTE: take care of the order. run vLLM first, and then run HF.
# vLLM needs a fresh new process without cuda initialization.
# if we run HF first, the cuda initialization will be done and it
# will hurt multiprocessing backend with fork method (the default method).

# max_model_len should be greater than image_feature_size
# Qwen encodes images into a fixed content size of 256
with vllm_runner(model,
max_model_len=300,
max_num_seqs=1,
dtype=dtype,
tensor_parallel_size=tensor_parallel_size,
distributed_executor_backend=distributed_executor_backend,
enforce_eager=True) as vllm_model:
vllm_outputs_per_image = [
vllm_model.generate_greedy_logprobs(prompts,
max_tokens,
num_logprobs=num_logprobs,
images=images)
for prompts, images in inputs_per_image
]

with hf_runner(model, dtype=dtype) as hf_model:
hf_outputs = hf_model.generate_greedy_logprobs_limit(
example_prompts,
max_tokens,
num_logprobs=num_logprobs,
hf_outputs_per_image = [
hf_model.generate_greedy_logprobs_limit(prompts,
max_tokens,
num_logprobs=num_logprobs,
images=images)
for prompts, images in inputs_per_image
]

for hf_outputs, vllm_outputs in zip(hf_outputs_per_image,
vllm_outputs_per_image):

check_logprobs_close(
outputs_0_lst=hf_outputs,
outputs_1_lst=vllm_outputs,
name_0="hf",
name_1="vllm",
)


@pytest.mark.parametrize("model", multimodal_models)
@pytest.mark.parametrize(
"size_factors",
[
# No image
[],
# Single-scale
[1.0],
# Single-scale, batched
[1.0, 1.0, 1.0],
# Multi-scale
[0.25, 0.5, 1.0],
],
)
@pytest.mark.parametrize("dtype", ["bfloat16"])
@pytest.mark.parametrize("max_tokens", [8])
@pytest.mark.parametrize("num_logprobs", [5])
def test_multimodal_models(tmp_path, hf_runner, vllm_runner, image_assets,
model, size_factors, dtype, max_tokens,
num_logprobs) -> None:
run_test(
tmp_path,
hf_runner,
vllm_runner,
image_assets,
model,
size_factors=size_factors,
dtype=dtype,
max_tokens=max_tokens,
num_logprobs=num_logprobs,
tensor_parallel_size=1,
)


# Ensure that a text-only Qwen model can still be loaded and
# used for inference in VLLM without throwing.
@pytest.mark.parametrize("model", text_only_models)
@pytest.mark.parametrize("dtype", ["bfloat16"])
@pytest.mark.parametrize("max_tokens", [32])
@pytest.mark.parametrize("num_logprobs", [5])
def test_text_only_qwen_model_can_be_loaded_and_run(
vllm_runner: Type[VllmRunner],
example_prompts,
model: str,
*,
dtype: str,
max_tokens: int,
num_logprobs: int,
):
with vllm_runner(model, dtype=dtype) as vllm_model:
vllm_outputs = vllm_model.generate_greedy_logprobs(
vllm_model.generate_greedy_logprobs(
example_prompts,
max_tokens,
num_logprobs=num_logprobs,
)

check_logprobs_close(
outputs_0_lst=hf_outputs,
outputs_1_lst=vllm_outputs,
name_0="hf",
name_1="vllm",
)
2 changes: 2 additions & 0 deletions vllm/entrypoints/chat_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -150,6 +150,8 @@ def _placeholder_str(self, modality: ModalityStr,
if model_type in ("blip-2", "chatglm", "fuyu", "paligemma"):
# These models do not use image tokens in the prompt
return None
if model_type == "qwen":
return f"Picture {current_count}: <img></img>"
if model_type.startswith("llava"):
return self._cached_token_str(self._tokenizer,
hf_config.image_token_index)
Expand Down
Loading

0 comments on commit a0b0a12

Please sign in to comment.