Skip to content

ahlinc/terraform-aws-lambda

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

84 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

AWS Lambda Terraform module

Terraform module, which creates almost all supported AWS Lambda resources as well as taking care of building and packaging of required Lambda dependencies for functions and layers.

These types of resources supported:

Not supported, yet:

This Terraform module is the part of serverless.tf framework, which aims to simplify all operations when working with the serverless in Terraform:

  1. Build and install dependencies - read more.
  2. Create, store, and use deployment packages - read more.
  3. Create, update, and publish AWS Lambda Function and Lambda Layer - see usage.
  4. Create static and dynamic aliases for AWS Lambda Function - see usage, see modules/alias.
  5. Do complex deployments (eg, rolling, canary, rollbacks, triggers) - read more, see modules/deploy.

Features

  • Build dependencies for your Lambda Function and Layer.
  • Support builds locally and in Docker (with or without SSH agent support for private builds).
  • Create deployment package or deploy existing (previously built package) from local, from S3, from URL.
  • Store deployment packages locally or in the S3 bucket.
  • Support almost all features of Lambda resources (function, layer, alias, etc.)
  • Lambda@Edge
  • Conditional creation for many types of resources.
  • Control execution of nearly any step in the process - build, package, store package, deploy, update.
  • Control nearly all aspects of Lambda resources (provisioned concurrency, VPC, dead-letter notification, tracing, async events, IAM role, IAM policies, and more).
  • Support integration with other serverless.tf modules like HTTP API Gateway (see examples there).

Usage

Lambda Function (store package locally)

module "lambda_function" {
  source = "terraform-aws-modules/lambda/aws"

  function_name = "my-lambda1"
  description   = "My awesome lambda function"
  handler       = "index.lambda_handler"
  runtime       = "python3.8"

  source_path = "../src/lambda-function1"

  tags = {
    Name = "my-lambda1"
  }
}

Lambda Function and Lambda Layer (store packages on S3)

module "lambda_function" {
  source = "terraform-aws-modules/lambda/aws"

  function_name = "lambda-with-layer"
  description   = "My awesome lambda function"
  handler       = "index.lambda_handler"
  runtime       = "python3.8"
  publish       = true

  source_path = "../src/lambda-function1"

  store_on_s3 = true
  s3_bucket   = "my-bucket-with-lambda-builds"

  layers = [
    module.lambda_layer_s3.this_lambda_layer_arn,
  ]

  environment_variables = {
    Serverless = "Terraform"
  }

  tags = {
    Module = "lambda-with-layer"
  }
}

module "lambda_layer_s3" {
  source = "terraform-aws-modules/lambda/aws"

  create_layer = true

  layer_name          = "lambda-layer-s3"
  description         = "My amazing lambda layer (deployed from S3)"
  compatible_runtimes = ["python3.8"]

  source_path = "../src/lambda-layer"

  store_on_s3 = true
  s3_bucket   = "my-bucket-with-lambda-builds"
}

Lambda Functions with existing package (prebuilt) stored locally

module "lambda_function_existing_package_local" {
  source = "terraform-aws-modules/lambda/aws"

  function_name = "my-lambda-existing-package-local"
  description   = "My awesome lambda function"
  handler       = "index.lambda_handler"
  runtime       = "python3.8"

  create_package         = false
  local_existing_package = "../existing_package.zip"
}

Lambda Function with existing package (prebuilt) stored in S3 bucket

Note that this module does not copy prebuilt packages into S3 bucket. This module can only store packages it builds locally and in S3 bucket.

locals {
  my_function_source = "../path/to/package.zip"
}

resource "aws_s3_bucket_object" "my_function" {
  bucket = "my-bucket-with-lambda-builds"
  key    = "${filemd5(local.my_function_source)}.zip"
  source = local.my_function_source
}

module "lambda_function_existing_package_s3" {
  source = "terraform-aws-modules/lambda/aws"

  function_name = "my-lambda-existing-package-local"
  description   = "My awesome lambda function"
  handler       = "index.lambda_handler"
  runtime       = "python3.8"

  create_package      = false
  s3_existing_package = {
    bucket = "my-bucket-with-lambda-builds"
    key    = aws_s3_bucket_object.my_function.id
  }
}

Lambda Layers (store packages locally and on S3)

module "lambda_layer_local" {
  source = "terraform-aws-modules/lambda/aws"

  create_layer = true

  layer_name          = "my-layer-local"
  description         = "My amazing lambda layer (deployed from local)"
  compatible_runtimes = ["python3.8"]

  source_path = "../fixtures/python3.8-app1"
}

module "lambda_layer_s3" {
  source = "terraform-aws-modules/lambda/aws"

  create_layer = true

  layer_name          = "my-layer-s3"
  description         = "My amazing lambda layer (deployed from S3)"
  compatible_runtimes = ["python3.8"]

  source_path = "../fixtures/python3.8-app1"

  store_on_s3 = true
  s3_bucket   = "my-bucket-with-lambda-builds"
}

Lambda@Edge

Make sure, you deploy Lambda@Edge functions into US East (N. Virginia) region (us-east-1). See Requirements and Restrictions on Lambda Functions.

module "lambda_at_edge" {
  source = "terraform-aws-modules/lambda/aws"

  lambda_at_edge = true

  function_name = "my-lambda-at-edge"
  description   = "My awesome lambda@edge function"
  handler       = "index.lambda_handler"
  runtime       = "python3.8"

  source_path = "../fixtures/python3.8-app1"

  tags = {
    Module = "lambda-at-edge"
  }
}

Lambda Function in VPC

module "lambda_function_in_vpc" {
  source = "terraform-aws-modules/lambda/aws"

  function_name = "my-lambda-in-vpc"
  description   = "My awesome lambda function"
  handler       = "index.lambda_handler"
  runtime       = "python3.8"

  source_path = "../fixtures/python3.8-app1"

  vpc_subnet_ids         = module.vpc.intra_subnets
  vpc_security_group_ids = [module.vpc.default_security_group_id]
  attach_network_policy = true
}

module "vpc" {
  source = "terraform-aws-modules/vpc/aws"

  name = "my-vpc"
  cidr = "10.10.0.0/16"

  # Specify at least one of: intra_subnets, private_subnets, or public_subnets
  azs           = ["eu-west-1a", "eu-west-1b", "eu-west-1c"]
  intra_subnets = ["10.10.101.0/24", "10.10.102.0/24", "10.10.103.0/24"]
}

Additional IAM policies for Lambda Functions

There are 4 supported ways to attach IAM policies to IAM role used by Lambda Function:

  1. policy_json - set as JSON string or heredoc, when attach_policy_json = true.
  2. policy - ARN of existing IAM policy, when attach_policy = true.
  3. policies - List of ARNs of existing IAM policies, when attach_policies = true.
  4. policy_statements - Map of maps to define IAM statements which will be generated as IAM policy. Requires attach_policy_statements = true. See examples/complete for more information.

Lambda Permissions for allowed triggers

Lambda Permissions should be specified to allow certain resources to invoke Lambda Function.

module "lambda_function" {
  source = "terraform-aws-modules/lambda/aws"
  
  # ...omitted for brevity

  allowed_triggers = {
    APIGatewayAny = {
      service = "apigateway"
      arn     = "arn:aws:execute-api:eu-west-1:135367859851:aqnku8akd0"
    },
    APIGatewayDevPost = {
      service    = "apigateway"
      source_arn = "arn:aws:execute-api:eu-west-1:135367859851:aqnku8akd0/dev/POST/*"
    },
    OneRule = {
      principal  = "events.amazonaws.com"
      source_arn = "arn:aws:events:eu-west-1:135367859851:rule/RunDaily"
    }
  }
}

Note: service = "apigateway" with arn is a short form to allow invocations of a Lambda Function from any stage, any method, any resource of an API Gateway.

Conditional creation

Sometimes you need to have a way to create resources conditionally but Terraform does not allow usage of count inside module block, so the solution is to specify create arguments.

module "lambda" {
  source = "terraform-aws-modules/lambda/aws"

  create = false # to disable all resources

  create_package  = false  # to control build package process
  create_function = false  # to control creation of the Lambda Function and related resources
  create_layer    = false  # to control creation of the Lambda Layer and related resources
  create_role     = false  # to control creation of the IAM role and policies required for Lambda Function

  attach_cloudwatch_logs_policy = false
  attach_dead_letter_policy     = false
  attach_network_policy         = false
  attach_tracing_policy         = false
  attach_async_event_policy     = false

  # ... omitted
}

How does building and packaging work?

This is one of the most complicated part done by the module and normally you don't have to know internals.

package.py is Python script which does it. Make sure, Python 3.7 or newer is installed. The main functions of the script are to generate a filename of zip-archive based on the content of the files, verify if zip-archive has been already created, and create zip-archive only when it is necessary (during apply, not plan).

Hash of zip-archive created with the same content of the files is always identical which prevents unnecessary force-updates of the Lambda resources unless content modifies. If you need to have different filenames for the same content you can specify extra string argument hash_extra.

When calling this module multiple times in one execution to create packages with the same source_path, zip-archives will be corrupted due to concurrent writes into the same file. There are two solutions - set different values for hash_extra to create different archives, or create package once outside (using this module) and then pass local_existing_package argument to create other Lambda resources.

Building and packaging has been historically hard to debug (especially with Terraform), so we made an effort to make it easier for user to see debug info. There are 3 different debug levels: DEBUG - to see only what is happening during planning phase, DEBUG2 - to see all logging values, DEBUG3 - to see all logging values and env variables (be careful sharing your env variables as they may contain secrets!).

User can specify debug level like this:

export TF_LAMBDA_PACKAGE_LOG_LEVEL=DEBUG2
terraform apply 

Build Dependencies

You can specify source_path in a variety of ways to achieve desired flexibility when building deployment packages locally or in Docker. You can use absolute or relative paths.

Note that, when building locally, files are not copying anywhere from the source directories when making packages, we use fast Python regular expressions to find matching files and directories, which makes packaging very fast and easy to understand.

Simple build from single directory

When source_path is set to a string, the content of that path will be used to create deployment package as-is:

source_path = "src/function1"

Static build from multiple source directories

When source_path is set to a list of directories the content of each will be taken and one archive will be created.

Combine various options for extreme flexibility

This is the most complete way of creating a deployment package from multiple sources with multiple dependencies. This example is showing all the available options:

source_path = [
  "src/main-source",
  {
    path     = "src/function1-dep",
    patterns = [
      "!.*/.*\\.txt", # Skip all txt files recursively
    ]
  }, {
    path             = "src/python3.8-app1",
    pip_requirements = true,
    prefix_in_zip    = "foo/bar1",
  }, {
    path             = "src/python3.8-app2",
    pip_requirements = "requirements-large.txt",
  }, {
    path     = "src/python3.8-app3",
    commands = ["npm install"],
    patterns = [
      "!.*/.*\\.txt",    # Skip all txt files recursively
      "node_modules/.+", # Include all node_modules
    ],
  }, {
    path     = "src/python3.8-app3",
    commands = ["go build"],
    patterns = <<END
      bin/.*
      abc/def/.*
    END
  }
]

Few notes:

  • All arguments except path are optional.
  • patterns - List of Python regex filenames should satisfy. Default value is "include everything" which is equal to patterns = [".*"]. This can also be specified as multiline heredoc string (no comments allowed). Some examples of valid patterns:
    !.*/.*\.txt        # Filter all txt files recursively
    node_modules/.*    # Include empty dir or with a content if it exists
    node_modules/.+    # Include full non empty node_modules dir with its content
    node_modules/      # Include node_modules itself without its content
                       # It's also a way to include an empty dir if it exists
    node_modules       # Include a file or an existing dir only

    !abc/.*            # Filter out everything in an abc folder
    abc/def/.*         # Re-include everything in abc/def sub folder
    !abc/def/hgk/.*    # Filter out again in abc/def/hgk sub folder
  • commands - List of commands to run. If specified, this argument overrides pip_requirements.
  • pip_requirements - Set to true to run pip install with requirements.txt found in path. Or set to another filename which you want to use instead.
  • prefix_in_zip - If specified, will be used as a prefix inside zip-archive. By default, everything installs into the root of zip-archive.

Building in Docker

If your Lambda Function or Layer uses some dependencies you can build them in Docker and have them included into deployment package. Here is how you can do it:

build_in_docker   = true
docker_file       = "src/python3.8-app1/docker/Dockerfile"
docker_build_root = "src/python3.8-app1/docker"
docker_image      = "lambci/lambda:build-python3.8"
runtime           = "python3.8"    # Setting runtime is required when building package in Docker and Lambda Layer resource.

Using this module you can install dependencies from private hosts. To do this, you need for forward SSH agent:

docker_with_ssh_agent = true

Deployment package - Create or use existing

By default, this module creates deployment package and uses it to create or update Lambda Function or Lambda Layer.

Sometimes, you may want to separate build of deployment package (eg, to compile and install dependencies) from the deployment of a package into two separate steps.

When creating archive locally outside of this module you need to set create_package = false and then argument local_existing_package = "existing_package.zip". Alternatively, you may prefer to keep your deployment packages into S3 bucket and provide a reference to them like this:

  create_package      = false
  s3_existing_package = {
    bucket = "my-bucket-with-lambda-builds"
    key    = "existing_package.zip"
  }

Using deployment package from remote URL

This can be implemented in two steps: download file locally using CURL, and pass path to deployment package as local_existing_package argument.

locals {
  package_url = "https://raw.githubusercontent.com/terraform-aws-modules/terraform-aws-lambda/master/examples/fixtures/python3.8-zip/existing_package.zip"
  downloaded  = "downloaded_package_${md5(local.package_url)}.zip"
}

resource "null_resource" "download_package" {
  triggers = {
    downloaded = local.downloaded
  }

  provisioner "local-exec" {
    command = "curl -L -o ${local.downloaded} ${local.package_url}"
  }
}

data "null_data_source" "downloaded_package" {
  inputs = {
    id       = null_resource.download_package.id
    filename = local.downloaded
  }
}

module "lambda_function_existing_package_from_remote_url" {
  source = "terraform-aws-modules/lambda/aws"

  function_name = "my-lambda-existing-package-local"
  description   = "My awesome lambda function"
  handler       = "index.lambda_handler"
  runtime       = "python3.8"

  create_package         = false
  local_existing_package = data.null_data_source.downloaded_package.outputs["filename"]
}

How to deploy and manage Lambda Functions?

Simple deployments

Typically, Lambda Function resource updates when source code changes. If publish = true is specified a new Lambda Function version will also be created.

Published Lambda Function can be invoked using either by version number or using $LATEST. This is the simplest way of deployment which does not required any additional tool or service.

Controlled deployments (rolling, canary, rollbacks)

In order to do controlled deployments (rolling, canary, rollbacks) of Lambda Functions we need to use Lambda Function aliases.

In simple terms, Lambda alias is like a pointer to either one version of Lambda Function (when deployment complete), or to two weighted versions of Lambda Function (during rolling or canary deployment).

One Lambda Function can be used in multiple aliases. Using aliases gives large control of which version deployed when having multiple environments.

There is alias module, which simplifies working with alias (create, manage configurations, updates, etc). See examples/alias for various use-cases how aliases can be configured and used.

There is deploy module, which creates required resources to do deployments using AWS CodeDeploy. It also creates the deployment, and wait for completion. See examples/deploy for complete end-to-end build/update/deploy process.

FAQ

Q1: Why deployment package not recreating every time I change something?

A1: There can be tons of reasons. The most likely is that changes has happened inside of dependency which is not used in calculating content hash. You can force it by setting value of hash_extra or to delete previously built package locally.

Q2: How to force recreate deployment package?

A2: Delete an existing zip-archive from builds directory, or make a change in your source code. If there is no zip-archive for the current content hash, it will be recreated during terraform apply.

Q3: null_resource.archive[0] must be replaced

A3: This probably mean that zip-archive has been deployed, but is currently absent locally, and it has to be recreated locally. When you run into this issue during CI/CD process (where workspace is clean), you can set environment variable TF_RECREATE_MISSING_LAMBDA_PACKAGE=false and run terraform apply.

Notes

  1. Creation of Lambda Functions and Lambda Layers is very similar and both support the same features (building from source path, using existing package, storing package locally or on S3)
  2. Check out this Awesome list of AWS Lambda Layers

Examples

  • Complete - Create Lambda resources in various combinations with all supported features.
  • Build and Package - Build and create deployment packages in various ways.
  • Alias - Create static and dynamic aliases in various ways.
  • Deploy - Complete end-to-end build/update/deploy process using AWS CodeDeploy.
  • Async Invocations - Create Lambda Function with async event configuration (with SQS and SNS integration).
  • With VPC - Create Lambda Function with VPC.

Requirements

Name Version
terraform ~> 0.12.6
aws ~> 2.46

Providers

Name Version
aws ~> 2.46
external n/a
local n/a
null n/a

Inputs

Name Description Type Default Required
allowed_triggers Map of allowed triggers to create Lambda permissions map(any) {} no
artifacts_dir Directory name where artifacts should be stored string "builds" no
attach_async_event_policy Controls whether async event policy should be added to IAM role for Lambda Function bool false no
attach_cloudwatch_logs_policy Controls whether CloudWatch Logs policy should be added to IAM role for Lambda Function bool true no
attach_dead_letter_policy Controls whether SNS/SQS dead letter notification policy should be added to IAM role for Lambda Function bool false no
attach_network_policy Controls whether VPC/network policy should be added to IAM role for Lambda Function bool false no
attach_policies Controls whether list of policies should be added to IAM role for Lambda Function bool false no
attach_policy Controls whether policy should be added to IAM role for Lambda Function bool false no
attach_policy_json Controls whether policy_json should be added to IAM role for Lambda Function bool false no
attach_policy_statements Controls whether policy_statements should be added to IAM role for Lambda Function bool false no
attach_tracing_policy Controls whether X-Ray tracing policy should be added to IAM role for Lambda Function bool false no
build_in_docker Whether to build dependencies in Docker bool false no
cloudwatch_logs_kms_key_id The ARN of the KMS Key to use when encrypting log data. string null no
cloudwatch_logs_retention_in_days Specifies the number of days you want to retain log events in the specified log group. Possible values are: 1, 3, 5, 7, 14, 30, 60, 90, 120, 150, 180, 365, 400, 545, 731, 1827, and 3653. number null no
cloudwatch_logs_tags A map of tags to assign to the resource. map(string) {} no
compatible_runtimes A list of Runtimes this layer is compatible with. Up to 5 runtimes can be specified. list(string) [] no
create Controls whether resources should be created bool true no
create_async_event_config Controls whether async event configuration for Lambda Function/Alias should be created bool false no
create_current_version_allowed_triggers Whether to allow triggers on current version of Lambda Function (this will revoke permissions from previous version because Terraform manages only current resources) bool true no
create_current_version_async_event_config Whether to allow async event configuration on current version of Lambda Function (this will revoke permissions from previous version because Terraform manages only current resources) bool true no
create_function Controls whether Lambda Function resource should be created bool true no
create_layer Controls whether Lambda Layer resource should be created bool false no
create_package Controls whether Lambda package should be created bool true no
create_role Controls whether IAM role for Lambda Function should be created bool true no
create_unqualified_alias_allowed_triggers Whether to allow triggers on unqualified alias pointing to $LATEST version bool true no
create_unqualified_alias_async_event_config Whether to allow async event configuration on unqualified alias pointing to $LATEST version bool true no
dead_letter_target_arn The ARN of an SNS topic or SQS queue to notify when an invocation fails. string null no
description Description of your Lambda Function (or Layer) string "" no
destination_on_failure Amazon Resource Name (ARN) of the destination resource for failed asynchronous invocations string null no
destination_on_success Amazon Resource Name (ARN) of the destination resource for successful asynchronous invocations string null no
docker_build_root Root dir where to build in Docker string "" no
docker_file Path to a Dockerfile when building in Docker string "" no
docker_image Docker image to use for the build string "" no
docker_pip_cache Whether to mount a shared pip cache folder into docker environment or not any null no
docker_with_ssh_agent Whether to pass SSH_AUTH_SOCK into docker environment or not bool false no
environment_variables A map that defines environment variables for the Lambda Function. map(string) {} no
function_name A unique name for your Lambda Function string "" no
handler Lambda Function entrypoint in your code string "" no
hash_extra The string to add into hashing function. Useful when building same source path for different functions. string "" no
kms_key_arn The ARN of KMS key to use by your Lambda Function string null no
lambda_at_edge Set this to true if using Lambda@Edge, to enable publishing, limit the timeout, and allow edgelambda.amazonaws.com to invoke the function bool false no
lambda_role IAM role attached to the Lambda Function. This governs both who / what can invoke your Lambda Function, as well as what resources our Lambda Function has access to. See Lambda Permission Model for more details. string "" no
layer_name Name of Lambda Layer to create string "" no
layers List of Lambda Layer Version ARNs (maximum of 5) to attach to your Lambda Function. list(string) null no
license_info License info for your Lambda Layer. Eg, MIT or full url of a license. string "" no
local_existing_package The absolute path to an existing zip-file to use string null no
maximum_event_age_in_seconds Maximum age of a request that Lambda sends to a function for processing in seconds. Valid values between 60 and 21600. number null no
maximum_retry_attempts Maximum number of times to retry when the function returns an error. Valid values between 0 and 2. Defaults to 2. number null no
memory_size Amount of memory in MB your Lambda Function can use at runtime. Valid value between 128 MB to 3008 MB, in 64 MB increments. number 128 no
number_of_policies Number of policies to attach to IAM role for Lambda Function number 0 no
policies List of policy statements ARN to attach to Lambda Function role list(string) [] no
policy An additional policy document ARN to attach to the Lambda Function role string null no
policy_json An additional policy document as JSON to attach to the Lambda Function role string null no
policy_statements Map of dynamic policy statements to attach to Lambda Function role any {} no
provisioned_concurrent_executions Amount of capacity to allocate. Must be greater than or equal to 1. number -1 no
publish Whether to publish creation/change as new Lambda Function Version. bool false no
reserved_concurrent_executions The amount of reserved concurrent executions for this Lambda Function. A value of 0 disables Lambda Function from being triggered and -1 removes any concurrency limitations. Defaults to Unreserved Concurrency Limits -1. number -1 no
role_description Description of IAM role to use for Lambda Function string null no
role_force_detach_policies Specifies to force detaching any policies the IAM role has before destroying it. bool true no
role_name Name of IAM role to use for Lambda Function string null no
role_path Path of IAM role to use for Lambda Function string null no
role_permissions_boundary The ARN of the policy that is used to set the permissions boundary for the IAM role used by Lambda Function string null no
role_tags A map of tags to assign to IAM role map(string) {} no
runtime Lambda Function runtime string "" no
s3_bucket S3 bucket to store artifacts string null no
s3_existing_package The S3 bucket object with keys bucket, key, version pointing to an existing zip-file to use map(string) null no
s3_object_storage_class Specifies the desired Storage Class for the artifact uploaded to S3. Can be either STANDARD, REDUCED_REDUNDANCY, ONEZONE_IA, INTELLIGENT_TIERING, or STANDARD_IA. string "ONEZONE_IA" no
s3_object_tags A map of tags to assign to S3 bucket object. map(string) {} no
source_path The absolute path to a local file or directory containing your Lambda source code any null no
store_on_s3 Whether to store produced artifacts on S3 or locally. bool false no
tags A map of tags to assign to resources. map(string) {} no
timeout The amount of time your Lambda Function has to run in seconds. number 3 no
tracing_mode Tracing mode of the Lambda Function. Valid value can be either PassThrough or Active. string null no
trusted_entities Lambda Function additional trusted entities for assuming roles (trust relationship) list(string) [] no
use_existing_cloudwatch_log_group Whether to use an existing CloudWatch log group or create new bool false no
vpc_security_group_ids List of security group ids when Lambda Function should run in the VPC. list(string) null no
vpc_subnet_ids List of subnet ids when Lambda Function should run in the VPC. Usually private or intra subnets. list(string) null no

Outputs

Name Description
lambda_cloudwatch_log_group_arn The ARN of the Cloudwatch Log Group
lambda_role_arn The ARN of the IAM role created for the Lambda Function
lambda_role_name The name of the IAM role created for the Lambda Function
local_filename The filename of zip archive deployed (if deployment was from local)
s3_object The map with S3 object data of zip archive deployed (if deployment was from S3)
this_lambda_function_arn The ARN of the Lambda Function
this_lambda_function_invoke_arn The Invoke ARN of the Lambda Function
this_lambda_function_kms_key_arn The ARN for the KMS encryption key of Lambda Function
this_lambda_function_last_modified The date Lambda Function resource was last modified
this_lambda_function_name The name of the Lambda Function
this_lambda_function_qualified_arn The ARN identifying your Lambda Function Version
this_lambda_function_source_code_hash Base64-encoded representation of raw SHA-256 sum of the zip file
this_lambda_function_source_code_size The size in bytes of the function .zip file
this_lambda_function_version Latest published version of Lambda Function
this_lambda_layer_arn The ARN of the Lambda Layer with version
this_lambda_layer_created_date The date Lambda Layer resource was created
this_lambda_layer_layer_arn The ARN of the Lambda Layer without version
this_lambda_layer_source_code_size The size in bytes of the Lambda Layer .zip file
this_lambda_layer_version The Lambda Layer version

Authors

Module managed by Anton Babenko. Check out serverless.tf to learn more about doing serverless with Terraform.

Please reach out to Betajob if you are looking for commercial support for your Terraform, AWS, or serverless project.

License

Apache 2 Licensed. See LICENSE for full details.

About

Terraform module which creates AWS Lambda resources

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • HCL 68.6%
  • Python 31.2%
  • Makefile 0.2%