Skip to content

Crash when type cannot be specialized in Tensorflow

Moderate severity GitHub Reviewed Published Feb 2, 2022 in tensorflow/tensorflow • Updated Jul 13, 2023

Package

pip tensorflow (pip)

Affected versions

< 2.5.3
>= 2.6.0, < 2.6.3
= 2.7.0

Patched versions

2.5.3
2.6.3
2.7.1
pip tensorflow-cpu (pip)
< 2.5.3
>= 2.6.0, < 2.6.3
= 2.7.0
2.5.3
2.6.3
2.7.1
pip tensorflow-gpu (pip)
< 2.5.3
>= 2.6.0, < 2.6.3
= 2.7.0
2.5.3
2.6.3
2.7.1

Description

Impact

Under certain scenarios, TensorFlow can fail to specialize a type during shape inference:

void InferenceContext::PreInputInit(
    const OpDef& op_def, const std::vector<const Tensor*>& input_tensors,
    const std::vector<ShapeHandle>& input_tensors_as_shapes) {
  const auto ret = full_type::SpecializeType(attrs_, op_def);
  DCHECK(ret.status().ok()) << "while instantiating types: " << ret.status();
  ret_types_ = ret.ValueOrDie();
  // ... 
}

However, DCHECK is a no-op in production builds and an assertion failure in debug builds. In the first case execution proceeds to the ValueOrDie line. This results in an assertion failure as ret contains an error Status, not a value. In the second case we also get a crash due to the assertion failure.

Patches

We have patched the issue in GitHub commit cb164786dc891ea11d3a900e90367c339305dc7b.

The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, and TensorFlow 2.6.3, as these are also affected and still in supported range.

For more information

Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.

References

@mihaimaruseac mihaimaruseac published to tensorflow/tensorflow Feb 2, 2022
Reviewed Feb 4, 2022
Published by the National Vulnerability Database Feb 4, 2022
Published to the GitHub Advisory Database Feb 9, 2022
Last updated Jul 13, 2023

Severity

Moderate

CVSS overall score

This score calculates overall vulnerability severity from 0 to 10 and is based on the Common Vulnerability Scoring System (CVSS).
/ 10

CVSS v3 base metrics

Attack vector
Network
Attack complexity
Low
Privileges required
Low
User interaction
None
Scope
Unchanged
Confidentiality
None
Integrity
None
Availability
High

CVSS v3 base metrics

Attack vector: More severe the more the remote (logically and physically) an attacker can be in order to exploit the vulnerability.
Attack complexity: More severe for the least complex attacks.
Privileges required: More severe if no privileges are required.
User interaction: More severe when no user interaction is required.
Scope: More severe when a scope change occurs, e.g. one vulnerable component impacts resources in components beyond its security scope.
Confidentiality: More severe when loss of data confidentiality is highest, measuring the level of data access available to an unauthorized user.
Integrity: More severe when loss of data integrity is the highest, measuring the consequence of data modification possible by an unauthorized user.
Availability: More severe when the loss of impacted component availability is highest.
CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H

EPSS score

0.143%
(51st percentile)

CVE ID

CVE-2022-23572

GHSA ID

GHSA-rww7-2gpw-fv6j
Loading Checking history
See something to contribute? Suggest improvements for this vulnerability.