TUPA is a transition-based parser for Universal Conceptual Cognitive Annotation (UCCA).
- Python 3.6
Create a Python virtual environment. For example, on Linux:
virtualenv --python=/usr/bin/python3 venv
. venv/bin/activate # on bash
source venv/bin/activate.csh # on csh
Install the latest release:
pip install tupa
Alternatively, install the latest code from GitHub (may be unstable):
git clone https://github.com/danielhers/tupa
cd tupa
python setup.py install
Having a directory with UCCA passage files (for example, the English Wiki corpus), run:
python -m tupa -t <train_dir> -d <dev_dir> -c <model_type> -m <model_filename>
The possible model types are sparse
, mlp
, and bilstm
.
Run the parser on a text file (here named example.txt
) using a trained model:
python -m tupa example.txt -m <model_filename>
An xml
file will be created per passage (separate by blank lines in the text file).
To download and extract a model pre-trained on the Wiki corpus, run:
curl -LO https://github.com/huji-nlp/tupa/releases/download/v1.3.6/ucca-bilstm-1.3.6.tar.gz
tar xvzf ucca-bilstm-1.3.6.tar.gz
Run the parser using the model:
python -m tupa example.txt -m models/ucca-bilstm
To get a model pre-trained on the French 20K Leagues corpus or a model pre-trained on the German 20K Leagues corpus, run:
curl -LO https://github.com/huji-nlp/tupa/releases/download/v1.3.6/ucca-bilstm-1.3.6-fr.tar.gz
tar xvzf ucca-bilstm-1.3.6-fr.tar.gz
curl -LO https://github.com/huji-nlp/tupa/releases/download/v1.3.6/ucca-bilstm-1.3.6-de.tar.gz
tar xvzf ucca-bilstm-1.3.6-de.tar.gz
Run the parser on a French/German text file (separate passages by blank lines):
python -m tupa exemple.txt -m models/ucca-bilstm-fr --lang fr
python -m tupa beispiel.txt -m models/ucca-bilstm-de --lang de
- Daniel Hershcovich: [email protected]
If you make use of this software, please cite the following paper:
@InProceedings{hershcovich2017a,
author = {Hershcovich, Daniel and Abend, Omri and Rappoport, Ari},
title = {A Transition-Based Directed Acyclic Graph Parser for UCCA},
booktitle = {Proc. of ACL},
year = {2017},
pages = {1127--1138},
url = {http://aclweb.org/anthology/P17-1104}
}
The version of the parser used in the paper is v1.0. To reproduce the experiments, run:
curl -L https://raw.githubusercontent.com/huji-nlp/tupa/master/experiments/acl2017.sh | bash
If you use the French, German or multitask models, please cite the following paper:
@InProceedings{hershcovich2018multitask,
author = {Hershcovich, Daniel and Abend, Omri and Rappoport, Ari},
title = {Multitask Parsing Across Semantic Representations},
booktitle = {Proc. of ACL},
year = {2018},
pages = {373--385},
url = {http://aclweb.org/anthology/P18-1035}
}
The version of the parser used in the paper is v1.3.3. To reproduce the experiments, run:
curl -L https://raw.githubusercontent.com/huji-nlp/tupa/master/experiments/acl2018.sh | bash
This package is licensed under the GPLv3 or later license (see LICENSE.txt
).