Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

refactor!: Remove free parameter estimation function #3802

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
99 changes: 0 additions & 99 deletions Core/include/Acts/Seeding/EstimateTrackParamsFromSeed.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -22,105 +22,6 @@
#include <optional>

namespace Acts {
/// @todo:
/// 1) Implement the simple Line and Circle fit based on Taubin Circle fit
/// 2) Implement the simple Line and Parabola fit (from HPS reconstruction by
/// Robert Johnson)

/// Estimate the track parameters on the xy plane from at least three space
/// points. It assumes the trajectory projection on the xy plane is a circle,
/// i.e. the magnetic field is along global z-axis.
///
/// The method is based on V. Karimaki NIM A305 (1991) 187-191:
/// https://doi.org/10.1016/0168-9002(91)90533-V
/// - no weights are used in Karimaki's fit; d0 is the distance of the point of
/// closest approach to the origin, 1/R is the curvature, phi is the angle of
/// the direction propagation (counter clockwise as positive) at the point of
/// cloest approach.
///
/// @tparam spacepoint_iterator_t The type of space point iterator
///
/// @param spBegin is the begin iterator for the space points
/// @param spEnd is the end iterator for the space points
/// @param logger A logger instance
///
/// @return optional bound track parameters with the estimated d0, phi and 1/R
/// stored with the indices, eBoundLoc0, eBoundPhi and eBoundQOverP,
/// respectively. The bound parameters with other indices are set to zero.
template <typename spacepoint_iterator_t>
std::optional<BoundVector> estimateTrackParamsFromSeed(
spacepoint_iterator_t spBegin, spacepoint_iterator_t spEnd,
const Logger& logger = getDummyLogger()) {
// Check the number of provided space points
std::size_t numSP = std::distance(spBegin, spEnd);
if (numSP < 3) {
ACTS_ERROR("At least three space points are required.");
return std::nullopt;
}

ActsScalar x2m = 0., xm = 0.;
ActsScalar xym = 0.;
ActsScalar y2m = 0., ym = 0.;
ActsScalar r2m = 0., r4m = 0.;
ActsScalar xr2m = 0., yr2m = 0.;

for (spacepoint_iterator_t it = spBegin; it != spEnd; it++) {
if (*it == nullptr) {
ACTS_ERROR("Empty space point found. This should not happen.");
return std::nullopt;
}

const auto& sp = *it;

ActsScalar x = sp->x();
ActsScalar y = sp->y();
ActsScalar r2 = x * x + y * y;
x2m += x * x;
xm += x;
xym += x * y;
y2m += y * y;
ym += y;
r2m += r2;
r4m += r2 * r2;
xr2m += x * r2;
yr2m += y * r2;
numSP++;
}
x2m = x2m / numSP;
xm = xm / numSP;
xym = xym / numSP;
y2m = y2m / numSP;
ym = ym / numSP;
r2m = r2m / numSP;
r4m = r4m / numSP;
xr2m = xr2m / numSP;
yr2m = yr2m / numSP;

ActsScalar Cxx = x2m - xm * xm;
ActsScalar Cxy = xym - xm * ym;
ActsScalar Cyy = y2m - ym * ym;
ActsScalar Cxr2 = xr2m - xm * r2m;
ActsScalar Cyr2 = yr2m - ym * r2m;
ActsScalar Cr2r2 = r4m - r2m * r2m;

ActsScalar q1 = Cr2r2 * Cxy - Cxr2 * Cyr2;
ActsScalar q2 = Cr2r2 * (Cxx - Cyy) - Cxr2 * Cxr2 + Cyr2 * Cyr2;

ActsScalar phi = 0.5 * std::atan(2 * q1 / q2);
ActsScalar k = (std::sin(phi) * Cxr2 - std::cos(phi) * Cyr2) * (1. / Cr2r2);
ActsScalar delta = -k * r2m + std::sin(phi) * xm - std::cos(phi) * ym;

ActsScalar rho = (2 * k) / (std::sqrt(1 - 4 * delta * k));
ActsScalar d0 = (2 * delta) / (1 + std::sqrt(1 - 4 * delta * k));

// Initialize the bound parameters vector
BoundVector params = BoundVector::Zero();
params[eBoundLoc0] = d0;
params[eBoundPhi] = phi;
params[eBoundQOverP] = rho;

return params;
}

/// Estimate the full track parameters from three space points
///
Expand Down
23 changes: 0 additions & 23 deletions Tests/UnitTests/Core/Seeding/EstimateTrackParamsFromSeedTest.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -165,36 +165,13 @@ BOOST_AUTO_TEST_CASE(trackparameters_estimation_test) {
BOOST_TEST_INFO(
"The truth track parameters at the bottom space point: \n"
<< expParams.transpose());
// The curvature of track projection on the transverse plane in unit
// of 1/mm
double rho = expParams[eBoundQOverP] * 0.3 * 2. / UnitConstants::m;

// The space point pointers
std::array<const SpacePoint*, 3> spacePointPtrs{};
std::transform(spacePoints.begin(), std::next(spacePoints.begin(), 3),
spacePointPtrs.begin(),
[](const auto& sp) { return &sp.second; });

// Test the partial track parameters estimator
auto partialParamsOpt = estimateTrackParamsFromSeed(
spacePointPtrs.begin(), spacePointPtrs.end(), *logger);
BOOST_REQUIRE(partialParamsOpt.has_value());
const auto& estPartialParams = partialParamsOpt.value();
BOOST_TEST_INFO(
"The estimated track parameters at the transverse plane: \n"
<< estPartialParams.transpose());

// The particle starting position is (0, 0, 0). Hence, d0 is zero; the
// phi at the point of cloest approach is exactly the phi of the truth
// particle
CHECK_CLOSE_ABS(estPartialParams[eBoundLoc0], 0., 1e-5);
CHECK_CLOSE_ABS(estPartialParams[eBoundPhi], phi, 1e-5);
CHECK_CLOSE_ABS(estPartialParams[eBoundQOverP], rho, 1e-4);
// The loc1, theta and time are set to zero in the estimator
CHECK_CLOSE_ABS(estPartialParams[eBoundLoc1], 0., 1e-10);
CHECK_CLOSE_ABS(estPartialParams[eBoundTheta], 0., 1e-10);
CHECK_CLOSE_ABS(estPartialParams[eBoundTime], 0., 1e-10);

// Test the full track parameters estimator
auto fullParamsOpt = estimateTrackParamsFromSeed(
geoCtx, spacePointPtrs.begin(), spacePointPtrs.end(),
Expand Down
Loading