Skip to content
This repository has been archived by the owner on Oct 4, 2022. It is now read-only.

add kruskal.cpp #2087

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
200 changes: 200 additions & 0 deletions C++/Algorithms/Graph Theory Algorithms/kruskal.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,200 @@
// C++ program for Kruskal's algorithm
// to find Minimum Spanning Tree of a
// given connected, undirected and weighted
// graph
#include <bits/stdc++.h>
using namespace std;

// a structure to represent a
// weighted edge in graph
class Edge {
public:
int src, dest, weight;
};

// a structure to represent a connected,
// undirected and weighted graph
class Graph {
public:

// V-> Number of vertices, E-> Number of edges
int V, E;

// graph is represented as an array of edges.
// Since the graph is undirected, the edge
// from src to dest is also edge from dest
// to src. Both are counted as 1 edge here.
Edge* edge;
};

// Creates a graph with V vertices and E edges
Graph* createGraph(int V, int E)
{
Graph* graph = new Graph;
graph->V = V;
graph->E = E;

graph->edge = new Edge[E];

return graph;
}

// A structure to represent a subset for union-find
class subset {
public:
int parent;
int rank;
};

// A utility function to find set of an element i
// (uses path compression technique)
int find(subset subsets[], int i)
{
// find root and make root as parent of i
// (path compression)
if (subsets[i].parent != i)
subsets[i].parent
= find(subsets, subsets[i].parent);

return subsets[i].parent;
}

// A function that does union of two sets of x and y
// (uses union by rank)
void Union(subset subsets[], int x, int y)
{
int xroot = find(subsets, x);
int yroot = find(subsets, y);

// Attach smaller rank tree under root of high
// rank tree (Union by Rank)
if (subsets[xroot].rank < subsets[yroot].rank)
subsets[xroot].parent = yroot;
else if (subsets[xroot].rank > subsets[yroot].rank)
subsets[yroot].parent = xroot;

// If ranks are same, then make one as root and
// increment its rank by one
else {
subsets[yroot].parent = xroot;
subsets[xroot].rank++;
}
}

// Compare two edges according to their weights.
// Used in qsort() for sorting an array of edges
int myComp(const void* a, const void* b)
{
Edge* a1 = (Edge*)a;
Edge* b1 = (Edge*)b;
return a1->weight > b1->weight;
}

// The main function to construct MST using Kruskal's
// algorithm
void KruskalMST(Graph* graph)
{
int V = graph->V;
Edge result[V]; // Tnis will store the resultant MST
int e = 0; // An index variable, used for result[]
int i = 0; // An index variable, used for sorted edges

// Step 1: Sort all the edges in non-decreasing
// order of their weight. If we are not allowed to
// change the given graph, we can create a copy of
// array of edges
qsort(graph->edge, graph->E, sizeof(graph->edge[0]),
myComp);

// Allocate memory for creating V ssubsets
subset* subsets = new subset[(V * sizeof(subset))];

// Create V subsets with single elements
for (int v = 0; v < V; ++v)
{
subsets[v].parent = v;
subsets[v].rank = 0;
}

// Number of edges to be taken is equal to V-1
while (e < V - 1 && i < graph->E)
{
// Step 2: Pick the smallest edge. And increment
// the index for next iteration
Edge next_edge = graph->edge[i++];

int x = find(subsets, next_edge.src);
int y = find(subsets, next_edge.dest);

// If including this edge does't cause cycle,
// include it in result and increment the index
// of result for next edge
if (x != y) {
result[e++] = next_edge;
Union(subsets, x, y);
}
// Else discard the next_edge
}

// print the contents of result[] to display the
// built MST
cout << "Following are the edges in the constructed "
"MST\n";
int minimumCost = 0;
for (i = 0; i < e; ++i)
{
cout << result[i].src << " -- " << result[i].dest
<< " == " << result[i].weight << endl;
minimumCost = minimumCost + result[i].weight;
}
// return;
cout << "Minimum Cost Spanning Tree: " << minimumCost
<< endl;
}

// Driver code
int main()
{
/* Let us create following weighted graph
10
0--------1
| \ |
6| 5\ |15
| \ |
2--------3
4 */
int V = 4; // Number of vertices in graph
int E = 5; // Number of edges in graph
Graph* graph = createGraph(V, E);

// add edge 0-1
graph->edge[0].src = 0;
graph->edge[0].dest = 1;
graph->edge[0].weight = 10;

// add edge 0-2
graph->edge[1].src = 0;
graph->edge[1].dest = 2;
graph->edge[1].weight = 6;

// add edge 0-3
graph->edge[2].src = 0;
graph->edge[2].dest = 3;
graph->edge[2].weight = 5;

// add edge 1-3
graph->edge[3].src = 1;
graph->edge[3].dest = 3;
graph->edge[3].weight = 15;

// add edge 2-3
graph->edge[4].src = 2;
graph->edge[4].dest = 3;
graph->edge[4].weight = 4;


// Function call
KruskalMST(graph);

return 0;
}