-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
adding script to generate training sets
- Loading branch information
Arianna Renzini
committed
Jan 24, 2024
1 parent
631cdfc
commit f98fa17
Showing
1 changed file
with
283 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,283 @@ | ||
#!/bin/env python | ||
# -*- coding: utf-8 -*- | ||
# Copyright (C) Arianna I. Renzini 2024 | ||
# | ||
# This program is free software; you can redistribute it and/or modify it | ||
# under the terms of the GNU General Public License as published by the | ||
# Free Software Foundation; either version 3 of the License, or (at your | ||
# option) any later version. | ||
# | ||
# This program is distributed in the hope that it will be useful, but | ||
# WITHOUT ANY WARRANTY; without even the implied warranty of | ||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General | ||
# Public License for more details. | ||
# | ||
# You should have received a copy of the GNU General Public License along | ||
# with this program; if not, write to the Free Software Foundation, Inc., | ||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. | ||
# | ||
# This file is part of the stochmon package | ||
|
||
import os | ||
import sys | ||
|
||
sys.path.append(os.getcwd()) | ||
|
||
from popstock.PopulationOmegaGW import PopulationOmegaGW | ||
from gwpopulation.models.mass import SinglePeakSmoothedMassDistribution | ||
from gwpopulation.models.redshift import MadauDickinsonRedshift | ||
from gwpopulation.utils import xp | ||
|
||
import argparse | ||
import numpy as np | ||
import bilby | ||
import tqdm | ||
import json | ||
|
||
import os | ||
from pathlib import Path | ||
|
||
from bilby.core.prior import Interped | ||
from bilby.core.utils import infer_args_from_function_except_n_args | ||
|
||
""" | ||
*** | ||
Use popstock to generate a training set of Omegas from a set of | ||
hyper-parameters describing the redshift and mass distribution | ||
of a population of black hole binaries. | ||
popstock will calculate omega_GW once, and reweight the samples from | ||
the fiducial distribution to the provided distributions. | ||
*** | ||
""" | ||
|
||
parser = argparse.ArgumentParser() | ||
parser.add_argument( | ||
"-ps", | ||
"--parameter_set", | ||
help="Parameter sets to generate training data for.", | ||
action="store", | ||
type=str, | ||
default=10000, | ||
) | ||
parser.add_argument( | ||
"-rd", | ||
"--run_directory", | ||
help="Run directory.", | ||
action="store", | ||
type=str, | ||
default="./", | ||
) | ||
parser.add_argument( | ||
"-sm", "--samples", help="Samples to use.", action="store", type=str, default=None | ||
) | ||
parser.add_argument( | ||
"-hsm", "--hyper_samples", help="Values of the hyper-parameters to use.", action="store", type=str, default=None | ||
) | ||
parser.add_argument( | ||
"-ns", | ||
"--number_samples", | ||
help="number of samples.", | ||
action="store", | ||
type=int, | ||
default=None, | ||
) | ||
parser.add_argument( | ||
"-t", | ||
"--tag", | ||
help="Tag to label the run.", | ||
action="store", | ||
type=str, | ||
default="test", | ||
) | ||
parser.add_argument( | ||
"-wf", | ||
"--waveform_approximant", | ||
help="Wavefrom approximant. Default is IMRPhenomD.", | ||
action="store", | ||
type=str, | ||
default="IMRPhenomD", | ||
) | ||
args = parser.parse_args() | ||
|
||
""" | ||
Unpack arguments | ||
--- | ||
Loading in parameters from parser; frequencies are fixed here | ||
(these can be easily customised later on by passing in a range and spacing). | ||
""" | ||
|
||
N_proposal_samples = args.number_samples | ||
wave_approx = args.waveform_approximant | ||
rundir = Path(args.run_directory) | ||
tag = args.tag | ||
freqs = np.arange(10, 2000, 5) | ||
|
||
""" | ||
Create mass and redshift distributions | ||
--- | ||
These are *fixed* in this script. To use custom distributions, | ||
more development is required. Current distributions are imported | ||
from the gwpopulation package (https://github.com/ColmTalbot/gwpopulation) | ||
Mass distribution: Power-Law Plus Peak (PLPP) | ||
(see App. B.2 of https://iopscience.iop.org/article/10.3847/2041-8213/abe949) | ||
Redshift distribution: Madau-Dickinson Star Formation Rate (SFR) | ||
(see https://arxiv.org/abs/1805.10270, | ||
and https://arxiv.org/abs/2003.12152 for the normalisation) | ||
""" | ||
|
||
mass_obj = SinglePeakSmoothedMassDistribution() | ||
redshift_obj = MadauDickinsonRedshift(z_max=10) | ||
|
||
models = { | ||
"mass_model": mass_obj, | ||
"redshift_model": redshift_obj, | ||
} | ||
|
||
""" | ||
Create the popstock object | ||
--- | ||
To create the PopulationOmegaGW object, you just need the mass and | ||
redshift models, and frequencies to use in the spectra calculations. | ||
We can then either sample over the models, or use user-defined samples. | ||
As sampling takes time (and is currently not optimized), it is recommended | ||
to do it once and use a (healthy) set of samples for future calculations. | ||
""" | ||
|
||
newpop = PopulationOmegaGW(models=models, frequency_array=freqs) | ||
|
||
if args.samples is not None: | ||
with open(args.samples) as samples_file: | ||
samples_dict = json.load(samples_file) | ||
Lambda_0 = samples_dict["Lambda_0"] | ||
samples_dict.pop("Lambda_0") | ||
if args.number_samples is None: | ||
args.number_samples = len(samples_dict["redshift"]) | ||
else: | ||
for key in samples_dict.keys(): | ||
samples_dict[key] = samples_dict[key][: args.number_samples] | ||
newpop.set_proposal_samples(proposal_samples=samples_dict) | ||
print(f"Using {args.number_samples} samples...") | ||
|
||
else: | ||
# fiducial distribution Lambda_0, should be good to generate | ||
# healthy sample sets. | ||
Lambda_0 = { | ||
"alpha": 2.5, | ||
"beta": 1, | ||
"delta_m": 3, | ||
"lam": 0.04, | ||
"mmax": 100, | ||
"mmin": 4, | ||
"mpp": 33, | ||
"sigpp": 5, | ||
"gamma": 2.7, | ||
"kappa": 3, | ||
"z_peak": 1.9, | ||
"rate": 15, | ||
} | ||
newpop.draw_and_set_proposal_samples( | ||
Lambda_0, N_proposal_samples=N_proposal_samples | ||
) | ||
|
||
""" | ||
Calculate omega_GW once | ||
--- | ||
Omega_GW is calculated once from the sample set provided. This | ||
can take a while depending on the number of samples, but only needs | ||
to be done once. using 10^6 samples takes about 40 minutes. | ||
This first omega_GW is saved to file, together with the samples used | ||
in case these weren't loaded from file. | ||
""" | ||
|
||
newpop.calculate_omega_gw(waveform_approximant=wave_approx, Lambda=Lambda_0) | ||
|
||
if args.samples is not None: | ||
np.savez( | ||
f"{os.path.join(rundir, f'omegagw_0_{tag}.npz')}", | ||
omega_gw=newpop.omega_gw, | ||
freqs=newpop.frequency_array, | ||
Lambda_0=Lambda_0, | ||
) | ||
|
||
else: | ||
np.savez( | ||
f"{os.path.join(rundir, f'omegagw_0_{tag}.npz')}", | ||
omega_gw=newpop.omega_gw, | ||
freqs=newpop.frequency_array, | ||
fiducial_samples=newpop.proposal_samples, | ||
Lambda_0=Lambda_0, | ||
draw_dict=newpop.pdraws, | ||
) | ||
|
||
""" | ||
Calculate omega_GW for a set of hyper-parameters (Lambda) | ||
--- | ||
This is the main step to create the omega_GW training set. | ||
The desired set of Lambdas should be passed in as a json file. | ||
In case none is passed, this script will look for a posterior file | ||
from the LVK O3 Populations paper (arXiv 2010.14533) lying around | ||
on CIT. All samples provided will be used. | ||
Result omega_GWs with their respective Lambdas are saved to a json file. | ||
""" | ||
|
||
new_omegas = {} | ||
|
||
new_omegas["Lambdas"] = [] | ||
new_omegas["Neff"] = [] | ||
new_omegas["omega_gw"] = [] | ||
|
||
if args.hyper_samples is not None: | ||
with open(args.hyper_samples) as samples_file: | ||
lambda_samples = json.load(samples_file) | ||
|
||
else: | ||
try: | ||
result = bilby.core.result.read_in_result(filename='/home/jacob.golomb/o3b-population-data/analyses/PowerLawPeak/o1o2o3_mass_c_iid_mag_iid_tilt_powerlaw_redshift_result.json') | ||
lambda_samples = result.posterior.sample(10000).to_dict('list') | ||
except IOError: | ||
raise ValueError("No samples for Lambda hyper-parameters have been provided, nor a default found.") | ||
N_trials = len(lambda_samples["alpha"]) | ||
|
||
print("Running trials...") | ||
for idx in tqdm.tqdm(range(N_trials)): | ||
Lambda_new = { | ||
"alpha": lambda_samples["alpha"][idx], | ||
"beta": lambda_samples["beta"][idx], | ||
"delta_m": lambda_samples["delta_m"][idx], | ||
"lam": lambda_samples["lam"][idx], | ||
"mmax": lambda_samples["mmax"][idx], | ||
"mmin": lambda_samples["mmin"][idx], | ||
"mpp": lambda_samples["mpp"][idx], | ||
"sigpp": lambda_samples["sigpp"][idx], | ||
"rate": lambda_samples["rate"][idx], | ||
"gamma": lambda_samples['lamb'][idx], | ||
"kappa": 3.83, #make this madau-dickinson; right now these two fixed parameters are fixed but we can pass in other ones! | ||
"z_peak": 2.0, | ||
} | ||
new_omegas["Lambdas"].append(Lambda_new) | ||
|
||
newpop.calculate_omega_gw(sampling_frequency=2048, Lambda=Lambda_new) | ||
new_omegas["Neff"].append( | ||
float((xp.sum(newpop.weights) ** 2) / (xp.sum(newpop.weights ** 2))) | ||
) | ||
new_omegas["omega_gw"].append(newpop.omega_gw.tolist()) | ||
|
||
new_omegas["freqs"] = newpop.frequency_array.tolist() | ||
|
||
omegas_dict = json.dumps(new_omegas) | ||
f = open(f"{os.path.join(rundir, f'new_omegas_{tag}.json')}", "w") | ||
f.write(omegas_dict) | ||
f.close() | ||
|
||
print("Done!") | ||
|
||
exit() |