Point cloud registration is a fundamental step for many tasks. In this paper, we propose a neural network named DetarNet to decouple the translation
All the experiments are conducted on a machine with an INTEL Xeon E5-2620 CPU and a single NVIDIA GTX1080Ti. The cuda version is 10.2. To prepare the required libraries, you can run the follows code:
pip install -r requirements.txt
Download the processed Sun3d, KITTI and 7scenes datasets.
Download the pretrained models for Sun3d and KITTI datasets.
Train the model on Sun3d dataset:
python main.py --data_tr=sun3d --run_mode=train --log_dir=[NAME]
Train the model on KITTI dataset:
python main.py --data_tr=KITTI --run_mode=train --log_dir=[NAME]
Test the pretrained model on Sun3d dataset:
python main.py --data_te=sun3d --run_mode=test --log_dir=sun3d_model
Test the pretrained model on KITTI dataset:
python main.py --data_te=KITTI --run_mode=test --log_dir=kitti_model
Test the pretrained model on 7scenes dataset:
python main.py --data_te=7scenes --run_mode=test --log_dir=sun3d_model
Our code is distributed under the MIT License. See LICENSE
file for more information.
@article{chen2021detarnet,
title={DetarNet: Decoupling Translation and Rotation by Siamese Network for Point Cloud Registration},
author={Chen, Zhi and Yang, Fan and Tao, Wenbing},
journal={arXiv preprint arXiv:2112.14059},
year={2021}
}
Our code follows several awesome repositories. We appreciate them for making their codes available to public.