Skip to content

Commit

Permalink
support step size for embedding model which outputs less embeddings (o…
Browse files Browse the repository at this point in the history
…pensearch-project#1586)

* support step size for embedding model which outputs less embeddings

Signed-off-by: Yaliang Wu <[email protected]>

* tune parameter name

Signed-off-by: Yaliang Wu <[email protected]>

* fine tune processed doc to always respect step size

Signed-off-by: Yaliang Wu <[email protected]>

---------

Signed-off-by: Yaliang Wu <[email protected]>
  • Loading branch information
ylwu-amzn committed Dec 1, 2023
1 parent d33f9d6 commit 40e8254
Show file tree
Hide file tree
Showing 2 changed files with 70 additions and 24 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -5,13 +5,6 @@

package org.opensearch.ml.engine.algorithms.remote;

import static org.opensearch.ml.engine.algorithms.remote.ConnectorUtils.processInput;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

import org.opensearch.client.Client;
import org.opensearch.cluster.service.ClusterService;
import org.opensearch.core.xcontent.NamedXContentRegistry;
Expand All @@ -25,6 +18,13 @@
import org.opensearch.ml.common.output.model.ModelTensors;
import org.opensearch.script.ScriptService;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

import static org.opensearch.ml.engine.algorithms.remote.ConnectorUtils.processInput;

public interface RemoteConnectorExecutor {

default ModelTensorOutput executePredict(MLInput mlInput) {
Expand All @@ -48,7 +48,14 @@ default ModelTensorOutput executePredict(MLInput mlInput) {
if (tempTensorOutputs.size() > 0 && tempTensorOutputs.get(0).getMlModelTensors() != null) {
tensorCount = tempTensorOutputs.get(0).getMlModelTensors().size();
}
processedDocs += Math.max(tensorCount, 1);
// This is to support some model which takes N text docs and embedding size is less than N-1.
// We need to tell executor what's the step size for each model run.
Map<String, String> parameters = getConnector().getParameters();
if (parameters != null && parameters.containsKey("input_docs_processed_step_size")) {
processedDocs += Integer.parseInt(parameters.get("input_docs_processed_step_size"));
} else {
processedDocs += Math.max(tensorCount, 1);
}
tensorOutputs.addAll(tempTensorOutputs);
}
} else {
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,8 @@
package org.opensearch.ml.engine.algorithms.remote;

import static org.mockito.ArgumentMatchers.any;
import static org.mockito.Mockito.mock;
import static org.mockito.Mockito.mockStatic;
import static org.mockito.Mockito.spy;
import static org.mockito.Mockito.when;

Expand Down Expand Up @@ -42,6 +44,7 @@
import org.opensearch.script.ScriptService;

import com.google.common.collect.ImmutableMap;
import java.util.Map;

public class HttpJsonConnectorExecutorTest {
@Rule
Expand Down Expand Up @@ -192,22 +195,15 @@ public void executePredict_TextDocsInput() throws IOException {
.then(invocation -> new TestTemplateService.MockTemplateScript.Factory(preprocessResult1))
.then(invocation -> new TestTemplateService.MockTemplateScript.Factory(preprocessResult2));

ConnectorAction predictAction = ConnectorAction
.builder()
.actionType(ConnectorAction.ActionType.PREDICT)
.method("POST")
.url("http://test.com/mock")
.preProcessFunction(MLPreProcessFunction.TEXT_DOCS_TO_OPENAI_EMBEDDING_INPUT)
.postProcessFunction(MLPostProcessFunction.OPENAI_EMBEDDING)
.requestBody("{\"input\": ${parameters.input}}")
.build();
Connector connector = HttpConnector
.builder()
.name("test connector")
.version("1")
.protocol("http")
.actions(Arrays.asList(predictAction))
.build();
ConnectorAction predictAction = ConnectorAction.builder()
.actionType(ConnectorAction.ActionType.PREDICT)
.method("POST")
.url("http://test.com/mock")
.preProcessFunction(MLPreProcessFunction.TEXT_DOCS_TO_OPENAI_EMBEDDING_INPUT)
.postProcessFunction(MLPostProcessFunction.OPENAI_EMBEDDING)
.requestBody("{\"input\": ${parameters.input}}")
.build();
HttpConnector connector = HttpConnector.builder().name("test connector").version("1").protocol("http").actions(Arrays.asList(predictAction)).build();
HttpJsonConnectorExecutor executor = spy(new HttpJsonConnectorExecutor(connector));
executor.setScriptService(scriptService);
when(httpClient.execute(any())).thenReturn(response);
Expand Down Expand Up @@ -244,6 +240,7 @@ public void executePredict_TextDocsInput() throws IOException {
HttpEntity entity = new StringEntity(modelResponse);
when(response.getEntity()).thenReturn(entity);
when(executor.getHttpClient()).thenReturn(httpClient);
when(executor.getConnector()).thenReturn(connector);
MLInputDataset inputDataSet = TextDocsInputDataSet.builder().docs(Arrays.asList("test doc1", "test doc2")).build();
ModelTensorOutput modelTensorOutput = executor
.executePredict(MLInput.builder().algorithm(FunctionName.REMOTE).inputDataset(inputDataSet).build());
Expand All @@ -261,4 +258,46 @@ public void executePredict_TextDocsInput() throws IOException {
modelTensorOutput.getMlModelOutputs().get(0).getMlModelTensors().get(1).getData()
);
}

@Test
public void executePredict_TextDocsInput_LessEmbeddingThanInputDocs() throws IOException {
String preprocessResult1 = "{\"parameters\": { \"input\": \"test doc1\" } }";
String preprocessResult2 = "{\"parameters\": { \"input\": \"test doc2\" } }";
when(scriptService.compile(any(), any()))
.then(invocation -> new TestTemplateService.MockTemplateScript.Factory(preprocessResult1))
.then(invocation -> new TestTemplateService.MockTemplateScript.Factory(preprocessResult2));

ConnectorAction predictAction = ConnectorAction.builder()
.actionType(ConnectorAction.ActionType.PREDICT)
.method("POST")
.url("http://test.com/mock")
.preProcessFunction(MLPreProcessFunction.TEXT_DOCS_TO_OPENAI_EMBEDDING_INPUT)
.postProcessFunction(MLPostProcessFunction.OPENAI_EMBEDDING)
.requestBody("{\"input\": ${parameters.input}}")
.build();
Map<String, String> parameters = ImmutableMap.of("input_docs_processed_step_size", "2");
HttpConnector connector = HttpConnector.builder().name("test connector").version("1").protocol("http").parameters(parameters).actions(Arrays.asList(predictAction)).build();
HttpJsonConnectorExecutor executor = spy(new HttpJsonConnectorExecutor(connector));
executor.setScriptService(scriptService);
when(httpClient.execute(any())).thenReturn(response);
// model takes 2 input docs, but only output 1 embedding
String modelResponse = "{\n" + " \"object\": \"list\",\n" + " \"data\": [\n" + " {\n"
+ " \"object\": \"embedding\",\n" + " \"index\": 0,\n" + " \"embedding\": [\n"
+ " -0.014555434,\n" + " -0.002135904,\n" + " 0.0035105038\n" + " ]\n"
+ " } ],\n"
+ " \"model\": \"text-embedding-ada-002-v2\",\n" + " \"usage\": {\n" + " \"prompt_tokens\": 5,\n"
+ " \"total_tokens\": 5\n" + " }\n" + "}";
StatusLine statusLine = new BasicStatusLine(new ProtocolVersion("HTTP", 1, 1), 200, "OK");
when(response.getStatusLine()).thenReturn(statusLine);
HttpEntity entity = new StringEntity(modelResponse);
when(response.getEntity()).thenReturn(entity);
when(executor.getHttpClient()).thenReturn(httpClient);
when(executor.getConnector()).thenReturn(connector);
MLInputDataset inputDataSet = TextDocsInputDataSet.builder().docs(Arrays.asList("test doc1", "test doc2")).build();
ModelTensorOutput modelTensorOutput = executor.executePredict(MLInput.builder().algorithm(FunctionName.REMOTE).inputDataset(inputDataSet).build());
Assert.assertEquals(1, modelTensorOutput.getMlModelOutputs().size());
Assert.assertEquals(1, modelTensorOutput.getMlModelOutputs().get(0).getMlModelTensors().size());
Assert.assertEquals("sentence_embedding", modelTensorOutput.getMlModelOutputs().get(0).getMlModelTensors().get(0).getName());
Assert.assertArrayEquals(new Number[] {-0.014555434, -0.002135904, 0.0035105038}, modelTensorOutput.getMlModelOutputs().get(0).getMlModelTensors().get(0).getData());
}
}

0 comments on commit 40e8254

Please sign in to comment.