Skip to content

[NeurIPS'24] Weak-to-Strong Search: Align Large Language Models via Searching over Small Language Models

Notifications You must be signed in to change notification settings

ZHZisZZ/weak-to-strong-search

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Weak-to-Strong Search

Code release for Weak-to-Strong Search: Align Large Language Models via Searching over Small Language Models.

  • The scripts/instruction_following directory contains code and instructions for using off-the-shelf small/weak models to guide the decoding of large/strong models to better follow human instructions.

  • The scripts/controlled_sentiment_generation directory contains code and instructions for using tuned and untuned gpt2s (124M) to control larger models to write positive movie reviews.

Installation

conda create -n weak-to-strong-search python=3.10
conda activate weak-to-strong-search
pip install torch=2.1.0 --index-url https://download.pytorch.org/whl/cu118
pip install -r requirements.txt
# (optional) pip install flash-attn==2.3.2 --no-build-isolation
# (optional) pip install bitsandbytes==0.42.0

Quick Start

(Click to expand) To use HuggingFaceH4/zephyr-7b-beta and its untuned verision HuggingFaceH4/mistral-7b-sft-beta to guide the decoding of meta-llama/Meta-Llama-3-8B-Instruct for better alignment.
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

from src.inference_time_alignment.decoders.cbs import CBSPosthocGenerationMixin
from src.inference_time_alignment.scorers import ImplicitValueScorer


def get_zephyr_scorer() -> ImplicitValueScorer:
    """
    Use `zephyr-7b-beta` and its untuned verision `mistral-7b-sft-beta` as scorer to guide other models
    """
    tuned_model = AutoModelForCausalLM.from_pretrained(
        "HuggingFaceH4/zephyr-7b-beta", torch_dtype=torch.bfloat16, device_map="auto")
    untuned_model = AutoModelForCausalLM.from_pretrained(
        "HuggingFaceH4/mistral-7b-sft-beta", torch_dtype=torch.bfloat16, device_map="auto")
    tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-beta")
    tokenizer.pad_token = tokenizer.eos_token
    tokenizer.padding_side = "right"
    prompt_template = tokenizer.apply_chat_template(
        [
            {"role": "system", "content": ""},
            {"role": "user",   "content": "{raw_prompt}"},
        ],
        tokenize=False, 
        add_generation_prompt=True,
    )
    implicit_value_scorer = ImplicitValueScorer(
        model=tuned_model,
        ref_model=untuned_model,
        tokenizer=tokenizer,
        model_prompt_template=prompt_template,
        ref_model_prompt_template=prompt_template,
    )
    return implicit_value_scorer


# the (stonger/larger) model to be guided
base = AutoModelForCausalLM.from_pretrained(
    "meta-llama/Meta-Llama-3-8B-Instruct", torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct")
prompt_template = tokenizer.apply_chat_template(
    [
        {"role": "system", "content": ""},
        {"role": "user",   "content": "{raw_prompt}"},
    ],
    tokenize=False, 
    add_generation_prompt=True,
)

# chunk-level beam search wrapper
cbs_model = CBSPosthocGenerationMixin(base, tokenizer)
# implicit value scorer
scorer = get_zephyr_scorer()

# prepare prompts
raw_prompt = "Who are you?"
prompt = prompt_template.format(raw_prompt=raw_prompt)
prompt_tokenized = tokenizer(prompt, return_tensors="pt", add_special_tokens=False)
prompt_len = prompt_tokenized["input_ids"].size(1)

# search for the highest scoring response
outputs = cbs_model.search(
    input_ids=prompt_tokenized["input_ids"].cuda(),
    attention_mask=prompt_tokenized["attention_mask"].cuda(),
    scorer=scorer.set_raw_prompt(raw_prompt),
    split_by_prompt_text=False,
    w=2, k=2, l=30, # CBS related args 
    max_new_tokens=128,
)

print(tokenizer.decode(outputs[0][prompt_len:], skip_special_tokens=True))

See scripts/instruction_following for more examples.

Reference

@article{zhou2024weak,
  title={Weak-to-Strong Search: Align Large Language Models via Searching over Small Language Models},
  author={Zhou, Zhanhui and Liu, Zhixuan and Liu, Jie and Dong, Zhichen and Yang, Chao and Qiao, Yu},
  journal={arXiv preprint arXiv:2405.19262},
  year={2024}
}

About

[NeurIPS'24] Weak-to-Strong Search: Align Large Language Models via Searching over Small Language Models

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages