forked from open-mmlab/mmagic
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Feature] Add script to crop REDS images into sub-images for faster IO (
- Loading branch information
1 parent
3293314
commit f116f0d
Showing
3 changed files
with
274 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,190 @@ | ||
# Copyright (c) OpenMMLab. All rights reserved. | ||
import argparse | ||
import os | ||
import os.path as osp | ||
import sys | ||
from multiprocessing import Pool | ||
|
||
import cv2 | ||
import mmcv | ||
import numpy as np | ||
|
||
|
||
def worker(path, opt): | ||
"""Worker for each process. | ||
Args: | ||
path (str): Image path. | ||
opt (dict): Configuration dict. It contains: | ||
crop_size (int): Crop size. | ||
step (int): Step for overlapped sliding window. | ||
thresh_size (int): Threshold size. Patches whose size is smaller | ||
than thresh_size will be dropped. | ||
save_folder (str): Path to save folder. | ||
compression_level (int): for cv2.IMWRITE_PNG_COMPRESSION. | ||
Returns: | ||
process_info (str): Process information displayed in progress bar. | ||
""" | ||
crop_size = opt['crop_size'] | ||
step = opt['step'] | ||
thresh_size = opt['thresh_size'] | ||
sequence, img_name = path.split('/')[-2:] | ||
img_name, extension = osp.splitext(osp.basename(path)) | ||
|
||
img = mmcv.imread(path, flag='unchanged') | ||
|
||
if img.ndim == 2 or img.ndim == 3: | ||
h, w = img.shape[:2] | ||
else: | ||
raise ValueError(f'Image ndim should be 2 or 3, but got {img.ndim}') | ||
|
||
h_space = np.arange(0, h - crop_size + 1, step) | ||
if h - (h_space[-1] + crop_size) > thresh_size: | ||
h_space = np.append(h_space, h - crop_size) | ||
w_space = np.arange(0, w - crop_size + 1, step) | ||
if w - (w_space[-1] + crop_size) > thresh_size: | ||
w_space = np.append(w_space, w - crop_size) | ||
|
||
index = 0 | ||
for x in h_space: | ||
for y in w_space: | ||
index += 1 | ||
cropped_img = img[x:x + crop_size, y:y + crop_size, ...] | ||
sub_folder = osp.join(opt['save_folder'], | ||
f'{sequence}_s{index:03d}') | ||
mmcv.mkdir_or_exist(sub_folder) | ||
cv2.imwrite( | ||
osp.join(sub_folder, f'{img_name}{extension}'), cropped_img, | ||
[cv2.IMWRITE_PNG_COMPRESSION, opt['compression_level']]) | ||
process_info = f'Processing {img_name} ...' | ||
return process_info | ||
|
||
|
||
def extract_subimages(opt): | ||
"""Crop images to subimages. | ||
Args: | ||
opt (dict): Configuration dict. It contains: | ||
input_folder (str): Path to the input folder. | ||
save_folder (str): Path to save folder. | ||
n_thread (int): Thread number. | ||
""" | ||
input_folder = opt['input_folder'] | ||
save_folder = opt['save_folder'] | ||
if not osp.exists(save_folder): | ||
os.makedirs(save_folder) | ||
print(f'mkdir {save_folder} ...') | ||
else: | ||
print(f'Folder {save_folder} already exists. Exit.') | ||
sys.exit(1) | ||
|
||
img_list = list(mmcv.scandir(input_folder, recursive=True)) | ||
|
||
img_list = [osp.join(input_folder, v) for v in img_list] | ||
prog_bar = mmcv.ProgressBar(len(img_list)) | ||
pool = Pool(opt['n_thread']) | ||
for path in img_list: | ||
pool.apply_async( | ||
worker, args=(path, opt), callback=lambda arg: prog_bar.update()) | ||
pool.close() | ||
pool.join() | ||
print('All processes done.') | ||
|
||
|
||
def main_extract_subimages(args): | ||
"""A multi-thread tool to crop large images to sub-images for faster IO. | ||
It is used for REDS dataset. | ||
opt (dict): Configuration dict. It contains: | ||
n_thread (int): Thread number. | ||
compression_level (int): CV_IMWRITE_PNG_COMPRESSION from 0 to 9. | ||
A higher value means a smaller size and longer compression time. | ||
Use 0 for faster CPU decompression. Default: 3, same in cv2. | ||
scales (list[int]): The downsampling factors corresponding to the | ||
LR folders you want to process. | ||
Default: []. | ||
input_folder (str): Path to the input folder. | ||
save_folder (str): Path to save folder. | ||
crop_size (int): Crop size. | ||
step (int): Step for overlapped sliding window. | ||
thresh_size (int): Threshold size. Patches whose size is lower | ||
than thresh_size will be dropped. | ||
Usage: | ||
For each folder, run this script. | ||
For example, if scales = [4], there are two folders to be processed: | ||
train_sharp | ||
train_sharp_bicubic/X4 | ||
After process, each sub_folder should have the same number of | ||
subimages. You can also specify scales by modifying the argument | ||
'scales'. Remember to modify opt configurations according to your | ||
settings. | ||
""" | ||
|
||
opt = {} | ||
opt['n_thread'] = args.n_thread | ||
opt['compression_level'] = args.compression_level | ||
|
||
# HR images | ||
opt['input_folder'] = osp.join(args.data_root, 'train_sharp') | ||
opt['save_folder'] = osp.join(args.data_root, 'train_sharp_sub') | ||
opt['crop_size'] = args.crop_size | ||
opt['step'] = args.step | ||
opt['thresh_size'] = args.thresh_size | ||
extract_subimages(opt) | ||
|
||
for scale in args.scales: | ||
opt['input_folder'] = osp.join(args.data_root, | ||
f'train_sharp_bicubic/X{scale}') | ||
opt['save_folder'] = osp.join(args.data_root, | ||
f'train_sharp_bicubic/X{scale}_sub') | ||
opt['crop_size'] = args.crop_size // scale | ||
opt['step'] = args.step // scale | ||
opt['thresh_size'] = args.thresh_size // scale | ||
extract_subimages(opt) | ||
|
||
|
||
def parse_args(): | ||
parser = argparse.ArgumentParser( | ||
description='Preprocess REDS datasets', | ||
epilog='You can first download REDS datasets using the script from:' | ||
'https://gist.github.com/SeungjunNah/b10d369b92840cb8dd2118dd4f41d643') | ||
parser.add_argument('--data-root', type=str, help='root path for REDS') | ||
parser.add_argument( | ||
'--scales', nargs='*', default=[], help='scale factor list') | ||
parser.add_argument( | ||
'--crop-size', | ||
nargs='?', | ||
default=480, | ||
help='cropped size for HR images') | ||
parser.add_argument( | ||
'--step', nargs='?', default=240, help='step size for HR images') | ||
parser.add_argument( | ||
'--thresh-size', | ||
nargs='?', | ||
default=0, | ||
help='threshold size for HR images') | ||
parser.add_argument( | ||
'--compression-level', | ||
nargs='?', | ||
default=3, | ||
help='compression level when save png images') | ||
parser.add_argument( | ||
'--n-thread', | ||
nargs='?', | ||
default=20, | ||
help='thread number when using multiprocessing') | ||
|
||
args = parser.parse_args() | ||
return args | ||
|
||
|
||
if __name__ == '__main__': | ||
args = parse_args() | ||
|
||
# extract subimages | ||
args.scales = [int(v) for v in args.scales] | ||
main_extract_subimages(args) |