Skip to content

Commit

Permalink
Add GLEAN (open-mmlab#296)
Browse files Browse the repository at this point in the history
* clone from MMEditing

* add GenerateFrameIndicesForRecurrent

* add unit test

* update format

* add stylegan2 with pretrained models

* add GLEAN architecture (WIP)

* GLEAN architecture

* Use build_component to build StyleGANv2

* add GenerateFrameIndicesForRecurrent

* add stylegan2 with pretrained models

* minor revision of architecture

* Minor fix

* Add MSELoss for perceptual loss

* merge master

* merge master

* sort

* Add GLEAN model

* Add unittest

* Remove pretrained in test

* Replace by test_srgan for verification

* Change disc to ModifiedVGG

* Remove init_weights

* Remove _load_pretrained_model

* revert to test_srgan

* Change Discriminator

* Use original StyleGAN2 discriminator

* Use GLEAN as generator

* Change to GLEAN model

* minor change

* remove redundancy in test_glean.py

* install

* Add unittests

* Revert to original StyleGAN2 discriminator

* Change math.log2 to np.log2

Co-authored-by: Rui Xu <[email protected]>
  • Loading branch information
ckkelvinchan and nbei authored May 27, 2021
1 parent 059a6e9 commit 6d3e387
Show file tree
Hide file tree
Showing 15 changed files with 2,399 additions and 7 deletions.
7 changes: 4 additions & 3 deletions mmedit/models/backbones/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,8 +12,9 @@
SimpleEncoderDecoder)
# yapf: enable
from .generation_backbones import ResnetGenerator, UnetGenerator
from .sr_backbones import (EDSR, RDN, SRCNN, BasicVSRNet, EDVRNet, IconVSR,
MSRResNet, RRDBNet, TOFlow, TTSRNet)
from .sr_backbones import (EDSR, RDN, SRCNN, BasicVSRNet, EDVRNet,
GLEANStyleGANv2, IconVSR, MSRResNet, RRDBNet,
TOFlow, TTSRNet)

__all__ = [
'MSRResNet', 'VGG16', 'PlainDecoder', 'SimpleEncoderDecoder',
Expand All @@ -25,5 +26,5 @@
'DeepFillEncoderDecoder', 'EDVRNet', 'IndexedUpsample', 'IndexNetEncoder',
'IndexNetDecoder', 'TOFlow', 'ResGCAEncoder', 'ResGCADecoder', 'SRCNN',
'UnetGenerator', 'ResnetGenerator', 'FBAResnetDilated', 'FBADecoder',
'BasicVSRNet', 'IconVSR', 'TTSRNet'
'BasicVSRNet', 'IconVSR', 'TTSRNet', 'GLEANStyleGANv2'
]
3 changes: 2 additions & 1 deletion mmedit/models/backbones/sr_backbones/__init__.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
from .basicvsr_net import BasicVSRNet
from .edsr import EDSR
from .edvr_net import EDVRNet
from .glean_styleganv2 import GLEANStyleGANv2
from .iconvsr import IconVSR
from .rdn import RDN
from .rrdb_net import RRDBNet
Expand All @@ -11,5 +12,5 @@

__all__ = [
'MSRResNet', 'RRDBNet', 'EDSR', 'EDVRNet', 'TOFlow', 'SRCNN',
'BasicVSRNet', 'IconVSR', 'RDN', 'TTSRNet'
'BasicVSRNet', 'IconVSR', 'RDN', 'TTSRNet', 'GLEANStyleGANv2'
]
330 changes: 330 additions & 0 deletions mmedit/models/backbones/sr_backbones/glean_styleganv2.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,330 @@
import numpy as np
import torch
import torch.nn as nn
from mmcv.runner import load_checkpoint

from mmedit.models.backbones.sr_backbones.rrdb_net import RRDB
from mmedit.models.builder import build_component
from mmedit.models.common import PixelShufflePack, make_layer
from mmedit.models.registry import BACKBONES
from mmedit.utils import get_root_logger


@BACKBONES.register_module()
class GLEANStyleGANv2(nn.Module):
r"""GLEAN (using StyleGANv2) architecture for super-resolution.
Paper:
GLEAN: Generative Latent Bank for Large-Factor Image Super-Resolution,
CVPR, 2021
This method makes use of StyleGAN2 and hence the arguments mostly follow
that in 'StyleGAN2v2Generator'.
In StyleGAN2, we use a static architecture composing of a style mapping
module and number of covolutional style blocks. More details can be found
in: Analyzing and Improving the Image Quality of StyleGAN CVPR2020.
You can load pretrained model through passing information into
``pretrained`` argument. We have already offered offical weights as
follows:
- styelgan2-ffhq-config-f: http://download.openmmlab.com/mmgen/stylegan2/official_weights/stylegan2-ffhq-config-f-official_20210327_171224-bce9310c.pth # noqa
- stylegan2-horse-config-f: http://download.openmmlab.com/mmgen/stylegan2/official_weights/stylegan2-horse-config-f-official_20210327_173203-ef3e69ca.pth # noqa
- stylegan2-car-config-f: http://download.openmmlab.com/mmgen/stylegan2/official_weights/stylegan2-car-config-f-official_20210327_172340-8cfe053c.pth # noqa
- styelgan2-cat-config-f: http://download.openmmlab.com/mmgen/stylegan2/official_weights/stylegan2-cat-config-f-official_20210327_172444-15bc485b.pth # noqa
- stylegan2-church-config-f: http://download.openmmlab.com/mmgen/stylegan2/official_weights/stylegan2-church-config-f-official_20210327_172657-1d42b7d1.pth # noqa
If you want to load the ema model, you can just use following codes:
.. code-block:: python
# ckpt_http is one of the valid path from http source
generator = StyleGANv2Generator(1024, 512,
pretrained=dict(
ckpt_path=ckpt_http,
prefix='generator_ema'))
Of course, you can also download the checkpoint in advance and set
``ckpt_path`` with local path. If you just want to load the original
generator (not the ema model), please set the prefix with 'generator'.
Note that our implementation allows to generate BGR image, while the
original StyleGAN2 outputs RGB images by default. Thus, we provide
``bgr2rgb`` argument to convert the image space.
Args:
in_size (int): The size of the input image.
out_size (int): The output size of the StyleGAN2 generator.
img_channels (int): Number of channels of the input images. 3 for RGB
image and 1 for grayscale image. Default: 3.
rrdb_channels (int): Number of channels of the RRDB features.
Default: 64.
num_rrdbs (int): Number of RRDB blocks in the encoder. Default: 23.
style_channels (int): The number of channels for style code.
Default: 512.
num_mlps (int, optional): The number of MLP layers. Defaults to 8.
channel_multiplier (int, optional): The mulitiplier factor for the
channel number. Defaults to 2.
blur_kernel (list, optional): The blurry kernel. Defaults
to [1, 3, 3, 1].
lr_mlp (float, optional): The learning rate for the style mapping
layer. Defaults to 0.01.
default_style_mode (str, optional): The default mode of style mixing.
In training, we defaultly adopt mixing style mode. However, in the
evaluation, we use 'single' style mode. `['mix', 'single']` are
currently supported. Defaults to 'mix'.
eval_style_mode (str, optional): The evaluation mode of style mixing.
Defaults to 'single'.
mix_prob (float, optional): Mixing probabilty. The value should be
in range of [0, 1]. Defaults to 0.9.
pretrained (dict | None, optional): Information for pretained models.
The necessary key is 'ckpt_path'. Besides, you can also provide
'prefix' to load the generator part from the whole state dict.
Defaults to None.
bgr2rgb (bool, optional): Whether to flip the image channel dimension.
Defaults to False.
"""

def __init__(self,
in_size,
out_size,
img_channels=3,
rrdb_channels=64,
num_rrdbs=23,
style_channels=512,
num_mlps=8,
channel_multiplier=2,
blur_kernel=[1, 3, 3, 1],
lr_mlp=0.01,
default_style_mode='mix',
eval_style_mode='single',
mix_prob=0.9,
pretrained=None,
bgr2rgb=False):

super().__init__()

# input size must be strictly smaller than output size
if in_size >= out_size:
raise ValueError('in_size must be smaller than out_size, but got '
f'{in_size} and {out_size}.')

# latent bank (StyleGANv2), with weights being fixed
self.generator = build_component(
dict(
type='StyleGANv2Generator',
out_size=out_size,
style_channels=style_channels,
num_mlps=num_mlps,
channel_multiplier=channel_multiplier,
blur_kernel=blur_kernel,
lr_mlp=lr_mlp,
default_style_mode=default_style_mode,
eval_style_mode=eval_style_mode,
mix_prob=mix_prob,
pretrained=pretrained,
bgr2rgb=bgr2rgb))
self.generator.requires_grad_(False)

self.in_size = in_size
self.style_channels = style_channels
channels = self.generator.channels

# encoder
num_styles = int(np.log2(out_size)) * 2 - 2
encoder_res = [2**i for i in range(int(np.log2(in_size)), 1, -1)]
self.encoder = nn.ModuleList()
self.encoder.append(
nn.Sequential(
RRDBFeatureExtractor(
img_channels, rrdb_channels, num_blocks=num_rrdbs),
nn.Conv2d(
rrdb_channels, channels[in_size], 3, 1, 1, bias=True),
nn.LeakyReLU(negative_slope=0.2, inplace=True)))
for res in encoder_res:
in_channels = channels[res]
if res > 4:
out_channels = channels[res // 2]
block = nn.Sequential(
nn.Conv2d(in_channels, out_channels, 3, 2, 1, bias=True),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
nn.Conv2d(out_channels, out_channels, 3, 1, 1, bias=True),
nn.LeakyReLU(negative_slope=0.2, inplace=True))
else:
block = nn.Sequential(
nn.Conv2d(in_channels, in_channels, 3, 1, 1, bias=True),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
nn.Flatten(),
nn.Linear(16 * in_channels, num_styles * style_channels))
self.encoder.append(block)

# additional modules for StyleGANv2
self.fusion_out = nn.ModuleList()
self.fusion_skip = nn.ModuleList()
for res in encoder_res[::-1]:
num_channels = channels[res]
self.fusion_out.append(
nn.Conv2d(num_channels * 2, num_channels, 3, 1, 1, bias=True))
self.fusion_skip.append(
nn.Conv2d(num_channels + 3, 3, 3, 1, 1, bias=True))

# decoder
decoder_res = [
2**i
for i in range(int(np.log2(in_size)), int(np.log2(out_size) + 1))
]
self.decoder = nn.ModuleList()
for res in decoder_res:
if res == in_size:
in_channels = channels[res]
else:
in_channels = 2 * channels[res]

if res < out_size:
out_channels = channels[res * 2]
self.decoder.append(
PixelShufflePack(
in_channels, out_channels, 2, upsample_kernel=3))
else:
self.decoder.append(
nn.Sequential(
nn.Conv2d(in_channels, 64, 3, 1, 1),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
nn.Conv2d(64, img_channels, 3, 1, 1)))

def forward(self, lq):
"""Forward function.
Args:
lq (Tensor): Input LR image with shape (n, c, h, w).
Returns:
Tensor: Output HR image.
"""

h, w = lq.shape[2:]
if h != self.in_size or w != self.in_size:
raise AssertionError(
f'Spatial resolution must equal in_size ({self.in_size}).'
f' Got ({h}, {w}).')

# encoder
feat = lq
encoder_features = []
for block in self.encoder:
feat = block(feat)
encoder_features.append(feat)
encoder_features = encoder_features[::-1]

latent = encoder_features[0].view(lq.size(0), -1, self.style_channels)
encoder_features = encoder_features[1:]

# generator
injected_noise = [
getattr(self.generator, f'injected_noise_{i}')
for i in range(self.generator.num_injected_noises)
]
# 4x4 stage
out = self.generator.constant_input(latent)
out = self.generator.conv1(out, latent[:, 0], noise=injected_noise[0])
skip = self.generator.to_rgb1(out, latent[:, 1])

_index = 1

# 8x8 ---> higher res
generator_features = []
for up_conv, conv, noise1, noise2, to_rgb in zip(
self.generator.convs[::2], self.generator.convs[1::2],
injected_noise[1::2], injected_noise[2::2],
self.generator.to_rgbs):

# feature fusion by channel-wise concatenation
if out.size(2) <= self.in_size:
fusion_index = (_index - 1) // 2
feat = encoder_features[fusion_index]

out = torch.cat([out, feat], dim=1)
out = self.fusion_out[fusion_index](out)

skip = torch.cat([skip, feat], dim=1)
skip = self.fusion_skip[fusion_index](skip)

# original StyleGAN operations
out = up_conv(out, latent[:, _index], noise=noise1)
out = conv(out, latent[:, _index + 1], noise=noise2)
skip = to_rgb(out, latent[:, _index + 2], skip)

# store features for decoder
if out.size(2) > self.in_size:
generator_features.append(out)

_index += 2

# decoder
hr = encoder_features[-1]
for i, block in enumerate(self.decoder):
if i > 0:
hr = torch.cat([hr, generator_features[i - 1]], dim=1)
hr = block(hr)

return hr

def init_weights(self, pretrained=None, strict=True):
"""Init weights for models.
Args:
pretrained (str, optional): Path for pretrained weights. If given
None, pretrained weights will not be loaded. Defaults to None.
strict (boo, optional): Whether strictly load the pretrained model.
Defaults to True.
"""
if isinstance(pretrained, str):
logger = get_root_logger()
load_checkpoint(self, pretrained, strict=strict, logger=logger)
elif pretrained is not None:
raise TypeError(f'"pretrained" must be a str or None. '
f'But received {type(pretrained)}.')


class RRDBFeatureExtractor(nn.Module):
"""Feature extractor composed of Residual-in-Residual Dense Blocks (RRDBs).
It is equivalent to ESRGAN with the upsampling module removed.
Args:
in_channels (int): Channel number of inputs.
mid_channels (int): Channel number of intermediate features.
Default: 64
num_blocks (int): Block number in the trunk network. Default: 23
growth_channels (int): Channels for each growth. Default: 32.
"""

def __init__(self,
in_channels=3,
mid_channels=64,
num_blocks=23,
growth_channels=32):

super().__init__()

self.conv_first = nn.Conv2d(in_channels, mid_channels, 3, 1, 1)
self.body = make_layer(
RRDB,
num_blocks,
mid_channels=mid_channels,
growth_channels=growth_channels)
self.conv_body = nn.Conv2d(mid_channels, mid_channels, 3, 1, 1)

def forward(self, x):
"""Forward function.
Args:
x (Tensor): Input tensor with shape (n, c, h, w).
Returns:
Tensor: Forward results.
"""

feat = self.conv_first(x)
return feat + self.conv_body(self.body(feat))
4 changes: 3 additions & 1 deletion mmedit/models/components/__init__.py
Original file line number Diff line number Diff line change
@@ -1,8 +1,10 @@
from .discriminators import (DeepFillv1Discriminators, GLDiscs, ModifiedVGG,
MultiLayerDiscriminator, PatchDiscriminator)
from .refiners import DeepFillRefiner, PlainRefiner
from .stylegan2 import StyleGAN2Discriminator, StyleGANv2Generator

__all__ = [
'PlainRefiner', 'GLDiscs', 'ModifiedVGG', 'MultiLayerDiscriminator',
'DeepFillv1Discriminators', 'DeepFillRefiner', 'PatchDiscriminator'
'DeepFillv1Discriminators', 'DeepFillRefiner', 'PatchDiscriminator',
'StyleGAN2Discriminator', 'StyleGANv2Generator'
]
4 changes: 4 additions & 0 deletions mmedit/models/components/stylegan2/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
from .generator_discriminator import (StyleGAN2Discriminator,
StyleGANv2Generator)

__all__ = ['StyleGANv2Generator', 'StyleGAN2Discriminator']
Loading

0 comments on commit 6d3e387

Please sign in to comment.