forked from open-mmlab/mmagic
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* clone from MMEditing * add GenerateFrameIndicesForRecurrent * add unit test * update format * add stylegan2 with pretrained models * add GLEAN architecture (WIP) * GLEAN architecture * Use build_component to build StyleGANv2 * add GenerateFrameIndicesForRecurrent * add stylegan2 with pretrained models * minor revision of architecture * Minor fix * Add MSELoss for perceptual loss * merge master * merge master * sort * Add GLEAN model * Add unittest * Remove pretrained in test * Replace by test_srgan for verification * Change disc to ModifiedVGG * Remove init_weights * Remove _load_pretrained_model * revert to test_srgan * Change Discriminator * Use original StyleGAN2 discriminator * Use GLEAN as generator * Change to GLEAN model * minor change * remove redundancy in test_glean.py * install * Add unittests * Revert to original StyleGAN2 discriminator * Change math.log2 to np.log2 Co-authored-by: Rui Xu <[email protected]>
- Loading branch information
1 parent
059a6e9
commit 6d3e387
Showing
15 changed files
with
2,399 additions
and
7 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
330 changes: 330 additions & 0 deletions
330
mmedit/models/backbones/sr_backbones/glean_styleganv2.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,330 @@ | ||
import numpy as np | ||
import torch | ||
import torch.nn as nn | ||
from mmcv.runner import load_checkpoint | ||
|
||
from mmedit.models.backbones.sr_backbones.rrdb_net import RRDB | ||
from mmedit.models.builder import build_component | ||
from mmedit.models.common import PixelShufflePack, make_layer | ||
from mmedit.models.registry import BACKBONES | ||
from mmedit.utils import get_root_logger | ||
|
||
|
||
@BACKBONES.register_module() | ||
class GLEANStyleGANv2(nn.Module): | ||
r"""GLEAN (using StyleGANv2) architecture for super-resolution. | ||
Paper: | ||
GLEAN: Generative Latent Bank for Large-Factor Image Super-Resolution, | ||
CVPR, 2021 | ||
This method makes use of StyleGAN2 and hence the arguments mostly follow | ||
that in 'StyleGAN2v2Generator'. | ||
In StyleGAN2, we use a static architecture composing of a style mapping | ||
module and number of covolutional style blocks. More details can be found | ||
in: Analyzing and Improving the Image Quality of StyleGAN CVPR2020. | ||
You can load pretrained model through passing information into | ||
``pretrained`` argument. We have already offered offical weights as | ||
follows: | ||
- styelgan2-ffhq-config-f: http://download.openmmlab.com/mmgen/stylegan2/official_weights/stylegan2-ffhq-config-f-official_20210327_171224-bce9310c.pth # noqa | ||
- stylegan2-horse-config-f: http://download.openmmlab.com/mmgen/stylegan2/official_weights/stylegan2-horse-config-f-official_20210327_173203-ef3e69ca.pth # noqa | ||
- stylegan2-car-config-f: http://download.openmmlab.com/mmgen/stylegan2/official_weights/stylegan2-car-config-f-official_20210327_172340-8cfe053c.pth # noqa | ||
- styelgan2-cat-config-f: http://download.openmmlab.com/mmgen/stylegan2/official_weights/stylegan2-cat-config-f-official_20210327_172444-15bc485b.pth # noqa | ||
- stylegan2-church-config-f: http://download.openmmlab.com/mmgen/stylegan2/official_weights/stylegan2-church-config-f-official_20210327_172657-1d42b7d1.pth # noqa | ||
If you want to load the ema model, you can just use following codes: | ||
.. code-block:: python | ||
# ckpt_http is one of the valid path from http source | ||
generator = StyleGANv2Generator(1024, 512, | ||
pretrained=dict( | ||
ckpt_path=ckpt_http, | ||
prefix='generator_ema')) | ||
Of course, you can also download the checkpoint in advance and set | ||
``ckpt_path`` with local path. If you just want to load the original | ||
generator (not the ema model), please set the prefix with 'generator'. | ||
Note that our implementation allows to generate BGR image, while the | ||
original StyleGAN2 outputs RGB images by default. Thus, we provide | ||
``bgr2rgb`` argument to convert the image space. | ||
Args: | ||
in_size (int): The size of the input image. | ||
out_size (int): The output size of the StyleGAN2 generator. | ||
img_channels (int): Number of channels of the input images. 3 for RGB | ||
image and 1 for grayscale image. Default: 3. | ||
rrdb_channels (int): Number of channels of the RRDB features. | ||
Default: 64. | ||
num_rrdbs (int): Number of RRDB blocks in the encoder. Default: 23. | ||
style_channels (int): The number of channels for style code. | ||
Default: 512. | ||
num_mlps (int, optional): The number of MLP layers. Defaults to 8. | ||
channel_multiplier (int, optional): The mulitiplier factor for the | ||
channel number. Defaults to 2. | ||
blur_kernel (list, optional): The blurry kernel. Defaults | ||
to [1, 3, 3, 1]. | ||
lr_mlp (float, optional): The learning rate for the style mapping | ||
layer. Defaults to 0.01. | ||
default_style_mode (str, optional): The default mode of style mixing. | ||
In training, we defaultly adopt mixing style mode. However, in the | ||
evaluation, we use 'single' style mode. `['mix', 'single']` are | ||
currently supported. Defaults to 'mix'. | ||
eval_style_mode (str, optional): The evaluation mode of style mixing. | ||
Defaults to 'single'. | ||
mix_prob (float, optional): Mixing probabilty. The value should be | ||
in range of [0, 1]. Defaults to 0.9. | ||
pretrained (dict | None, optional): Information for pretained models. | ||
The necessary key is 'ckpt_path'. Besides, you can also provide | ||
'prefix' to load the generator part from the whole state dict. | ||
Defaults to None. | ||
bgr2rgb (bool, optional): Whether to flip the image channel dimension. | ||
Defaults to False. | ||
""" | ||
|
||
def __init__(self, | ||
in_size, | ||
out_size, | ||
img_channels=3, | ||
rrdb_channels=64, | ||
num_rrdbs=23, | ||
style_channels=512, | ||
num_mlps=8, | ||
channel_multiplier=2, | ||
blur_kernel=[1, 3, 3, 1], | ||
lr_mlp=0.01, | ||
default_style_mode='mix', | ||
eval_style_mode='single', | ||
mix_prob=0.9, | ||
pretrained=None, | ||
bgr2rgb=False): | ||
|
||
super().__init__() | ||
|
||
# input size must be strictly smaller than output size | ||
if in_size >= out_size: | ||
raise ValueError('in_size must be smaller than out_size, but got ' | ||
f'{in_size} and {out_size}.') | ||
|
||
# latent bank (StyleGANv2), with weights being fixed | ||
self.generator = build_component( | ||
dict( | ||
type='StyleGANv2Generator', | ||
out_size=out_size, | ||
style_channels=style_channels, | ||
num_mlps=num_mlps, | ||
channel_multiplier=channel_multiplier, | ||
blur_kernel=blur_kernel, | ||
lr_mlp=lr_mlp, | ||
default_style_mode=default_style_mode, | ||
eval_style_mode=eval_style_mode, | ||
mix_prob=mix_prob, | ||
pretrained=pretrained, | ||
bgr2rgb=bgr2rgb)) | ||
self.generator.requires_grad_(False) | ||
|
||
self.in_size = in_size | ||
self.style_channels = style_channels | ||
channels = self.generator.channels | ||
|
||
# encoder | ||
num_styles = int(np.log2(out_size)) * 2 - 2 | ||
encoder_res = [2**i for i in range(int(np.log2(in_size)), 1, -1)] | ||
self.encoder = nn.ModuleList() | ||
self.encoder.append( | ||
nn.Sequential( | ||
RRDBFeatureExtractor( | ||
img_channels, rrdb_channels, num_blocks=num_rrdbs), | ||
nn.Conv2d( | ||
rrdb_channels, channels[in_size], 3, 1, 1, bias=True), | ||
nn.LeakyReLU(negative_slope=0.2, inplace=True))) | ||
for res in encoder_res: | ||
in_channels = channels[res] | ||
if res > 4: | ||
out_channels = channels[res // 2] | ||
block = nn.Sequential( | ||
nn.Conv2d(in_channels, out_channels, 3, 2, 1, bias=True), | ||
nn.LeakyReLU(negative_slope=0.2, inplace=True), | ||
nn.Conv2d(out_channels, out_channels, 3, 1, 1, bias=True), | ||
nn.LeakyReLU(negative_slope=0.2, inplace=True)) | ||
else: | ||
block = nn.Sequential( | ||
nn.Conv2d(in_channels, in_channels, 3, 1, 1, bias=True), | ||
nn.LeakyReLU(negative_slope=0.2, inplace=True), | ||
nn.Flatten(), | ||
nn.Linear(16 * in_channels, num_styles * style_channels)) | ||
self.encoder.append(block) | ||
|
||
# additional modules for StyleGANv2 | ||
self.fusion_out = nn.ModuleList() | ||
self.fusion_skip = nn.ModuleList() | ||
for res in encoder_res[::-1]: | ||
num_channels = channels[res] | ||
self.fusion_out.append( | ||
nn.Conv2d(num_channels * 2, num_channels, 3, 1, 1, bias=True)) | ||
self.fusion_skip.append( | ||
nn.Conv2d(num_channels + 3, 3, 3, 1, 1, bias=True)) | ||
|
||
# decoder | ||
decoder_res = [ | ||
2**i | ||
for i in range(int(np.log2(in_size)), int(np.log2(out_size) + 1)) | ||
] | ||
self.decoder = nn.ModuleList() | ||
for res in decoder_res: | ||
if res == in_size: | ||
in_channels = channels[res] | ||
else: | ||
in_channels = 2 * channels[res] | ||
|
||
if res < out_size: | ||
out_channels = channels[res * 2] | ||
self.decoder.append( | ||
PixelShufflePack( | ||
in_channels, out_channels, 2, upsample_kernel=3)) | ||
else: | ||
self.decoder.append( | ||
nn.Sequential( | ||
nn.Conv2d(in_channels, 64, 3, 1, 1), | ||
nn.LeakyReLU(negative_slope=0.2, inplace=True), | ||
nn.Conv2d(64, img_channels, 3, 1, 1))) | ||
|
||
def forward(self, lq): | ||
"""Forward function. | ||
Args: | ||
lq (Tensor): Input LR image with shape (n, c, h, w). | ||
Returns: | ||
Tensor: Output HR image. | ||
""" | ||
|
||
h, w = lq.shape[2:] | ||
if h != self.in_size or w != self.in_size: | ||
raise AssertionError( | ||
f'Spatial resolution must equal in_size ({self.in_size}).' | ||
f' Got ({h}, {w}).') | ||
|
||
# encoder | ||
feat = lq | ||
encoder_features = [] | ||
for block in self.encoder: | ||
feat = block(feat) | ||
encoder_features.append(feat) | ||
encoder_features = encoder_features[::-1] | ||
|
||
latent = encoder_features[0].view(lq.size(0), -1, self.style_channels) | ||
encoder_features = encoder_features[1:] | ||
|
||
# generator | ||
injected_noise = [ | ||
getattr(self.generator, f'injected_noise_{i}') | ||
for i in range(self.generator.num_injected_noises) | ||
] | ||
# 4x4 stage | ||
out = self.generator.constant_input(latent) | ||
out = self.generator.conv1(out, latent[:, 0], noise=injected_noise[0]) | ||
skip = self.generator.to_rgb1(out, latent[:, 1]) | ||
|
||
_index = 1 | ||
|
||
# 8x8 ---> higher res | ||
generator_features = [] | ||
for up_conv, conv, noise1, noise2, to_rgb in zip( | ||
self.generator.convs[::2], self.generator.convs[1::2], | ||
injected_noise[1::2], injected_noise[2::2], | ||
self.generator.to_rgbs): | ||
|
||
# feature fusion by channel-wise concatenation | ||
if out.size(2) <= self.in_size: | ||
fusion_index = (_index - 1) // 2 | ||
feat = encoder_features[fusion_index] | ||
|
||
out = torch.cat([out, feat], dim=1) | ||
out = self.fusion_out[fusion_index](out) | ||
|
||
skip = torch.cat([skip, feat], dim=1) | ||
skip = self.fusion_skip[fusion_index](skip) | ||
|
||
# original StyleGAN operations | ||
out = up_conv(out, latent[:, _index], noise=noise1) | ||
out = conv(out, latent[:, _index + 1], noise=noise2) | ||
skip = to_rgb(out, latent[:, _index + 2], skip) | ||
|
||
# store features for decoder | ||
if out.size(2) > self.in_size: | ||
generator_features.append(out) | ||
|
||
_index += 2 | ||
|
||
# decoder | ||
hr = encoder_features[-1] | ||
for i, block in enumerate(self.decoder): | ||
if i > 0: | ||
hr = torch.cat([hr, generator_features[i - 1]], dim=1) | ||
hr = block(hr) | ||
|
||
return hr | ||
|
||
def init_weights(self, pretrained=None, strict=True): | ||
"""Init weights for models. | ||
Args: | ||
pretrained (str, optional): Path for pretrained weights. If given | ||
None, pretrained weights will not be loaded. Defaults to None. | ||
strict (boo, optional): Whether strictly load the pretrained model. | ||
Defaults to True. | ||
""" | ||
if isinstance(pretrained, str): | ||
logger = get_root_logger() | ||
load_checkpoint(self, pretrained, strict=strict, logger=logger) | ||
elif pretrained is not None: | ||
raise TypeError(f'"pretrained" must be a str or None. ' | ||
f'But received {type(pretrained)}.') | ||
|
||
|
||
class RRDBFeatureExtractor(nn.Module): | ||
"""Feature extractor composed of Residual-in-Residual Dense Blocks (RRDBs). | ||
It is equivalent to ESRGAN with the upsampling module removed. | ||
Args: | ||
in_channels (int): Channel number of inputs. | ||
mid_channels (int): Channel number of intermediate features. | ||
Default: 64 | ||
num_blocks (int): Block number in the trunk network. Default: 23 | ||
growth_channels (int): Channels for each growth. Default: 32. | ||
""" | ||
|
||
def __init__(self, | ||
in_channels=3, | ||
mid_channels=64, | ||
num_blocks=23, | ||
growth_channels=32): | ||
|
||
super().__init__() | ||
|
||
self.conv_first = nn.Conv2d(in_channels, mid_channels, 3, 1, 1) | ||
self.body = make_layer( | ||
RRDB, | ||
num_blocks, | ||
mid_channels=mid_channels, | ||
growth_channels=growth_channels) | ||
self.conv_body = nn.Conv2d(mid_channels, mid_channels, 3, 1, 1) | ||
|
||
def forward(self, x): | ||
"""Forward function. | ||
Args: | ||
x (Tensor): Input tensor with shape (n, c, h, w). | ||
Returns: | ||
Tensor: Forward results. | ||
""" | ||
|
||
feat = self.conv_first(x) | ||
return feat + self.conv_body(self.body(feat)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,8 +1,10 @@ | ||
from .discriminators import (DeepFillv1Discriminators, GLDiscs, ModifiedVGG, | ||
MultiLayerDiscriminator, PatchDiscriminator) | ||
from .refiners import DeepFillRefiner, PlainRefiner | ||
from .stylegan2 import StyleGAN2Discriminator, StyleGANv2Generator | ||
|
||
__all__ = [ | ||
'PlainRefiner', 'GLDiscs', 'ModifiedVGG', 'MultiLayerDiscriminator', | ||
'DeepFillv1Discriminators', 'DeepFillRefiner', 'PatchDiscriminator' | ||
'DeepFillv1Discriminators', 'DeepFillRefiner', 'PatchDiscriminator', | ||
'StyleGAN2Discriminator', 'StyleGANv2Generator' | ||
] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,4 @@ | ||
from .generator_discriminator import (StyleGAN2Discriminator, | ||
StyleGANv2Generator) | ||
|
||
__all__ = ['StyleGANv2Generator', 'StyleGAN2Discriminator'] |
Oops, something went wrong.