forked from open-mmlab/mmagic
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* [Feature] Add DIC * Add test * Fix * Fix * Update Co-authored-by: liyinshuo <[email protected]>
- Loading branch information
Showing
3 changed files
with
280 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,183 @@ | ||
import numbers | ||
import os.path as osp | ||
from collections import OrderedDict | ||
|
||
import mmcv | ||
import torch | ||
|
||
from mmedit.core import tensor2img | ||
from mmedit.models.common import ImgNormalize | ||
from ..builder import build_backbone, build_loss | ||
from ..registry import MODELS | ||
from .basic_restorer import BasicRestorer | ||
|
||
|
||
@MODELS.register_module() | ||
class DIC(BasicRestorer): | ||
"""DIC model for Face Super-Resolution. | ||
Paper: Deep Face Super-Resolution with Iterative Collaboration between | ||
Attentive Recovery and Landmark Estimation. | ||
Args: | ||
generator (dict): Config for the generator. | ||
pixel_loss (dict): Config for the pixel loss. | ||
align_loss (dict): Config for thr align loss. | ||
train_cfg (dict): Config for train. Default: None. | ||
test_cfg (dict): Config for testing. Default: None. | ||
pretrained (str): Path for pretrained model. Default: None. | ||
""" | ||
|
||
def __init__(self, | ||
generator, | ||
pixel_loss, | ||
align_loss, | ||
train_cfg=None, | ||
test_cfg=None, | ||
pretrained=None): | ||
super(BasicRestorer, self).__init__() | ||
|
||
self.train_cfg = train_cfg | ||
self.test_cfg = test_cfg | ||
|
||
# model | ||
self.generator = build_backbone(generator) | ||
self.img_denormalize = ImgNormalize( | ||
pixel_range=1, | ||
img_mean=(0.509, 0.424, 0.378), | ||
img_std=(1., 1., 1.), | ||
sign=1) | ||
|
||
# loss | ||
self.pixel_loss = build_loss(pixel_loss) | ||
self.align_loss = build_loss(align_loss) | ||
|
||
# pretrained | ||
self.init_weights(pretrained) | ||
|
||
def forward(self, lq, gt=None, test_mode=False, **kwargs): | ||
"""Forward function. | ||
Args: | ||
lq (Tensor): Input lq images. | ||
gt (Tensor): Ground-truth image. Default: None. | ||
test_mode (bool): Whether in test mode or not. Default: False. | ||
kwargs (dict): Other arguments. | ||
""" | ||
|
||
if test_mode: | ||
return self.forward_test(lq, gt=gt, **kwargs) | ||
|
||
return self.generator.forward(lq) | ||
|
||
def train_step(self, data_batch, optimizer): | ||
"""Train step. | ||
Args: | ||
data_batch (dict): A batch of data, which requires | ||
'lq', 'gt' | ||
optimizer (obj): Optimizer. | ||
Returns: | ||
dict: Returned output, which includes: | ||
log_vars, num_samples, results (lq, gt and pred). | ||
""" | ||
# data | ||
lq = data_batch['lq'] | ||
gt = data_batch['gt'] | ||
gt_heatmap = data_batch['heatmap'] | ||
|
||
# generate | ||
sr_list, heatmap_list = self(**data_batch, test_mode=False) | ||
|
||
# loss | ||
losses = OrderedDict() | ||
|
||
loss_pix = 0.0 | ||
loss_align = 0.0 | ||
for step, (sr, heatmap) in enumerate(zip(sr_list, heatmap_list)): | ||
losses[f'loss_pixel_v{step}'] = self.pixel_loss(sr, gt) | ||
loss_pix += losses[f'loss_pixel_v{step}'] | ||
losses[f'loss_align_v{step}'] = self.pixel_loss( | ||
heatmap, gt_heatmap) | ||
loss_align += losses[f'loss_align_v{step}'] | ||
|
||
# parse loss | ||
loss, log_vars = self.parse_losses(losses) | ||
|
||
# optimize | ||
optimizer['generator'].zero_grad() | ||
loss.backward() | ||
optimizer['generator'].step() | ||
|
||
log_vars.pop('loss') # remove the unnecessary 'loss' | ||
outputs = dict( | ||
log_vars=log_vars, | ||
num_samples=len(gt.data), | ||
results=dict(lq=lq.cpu(), gt=gt.cpu(), output=sr_list[-1].cpu())) | ||
|
||
return outputs | ||
|
||
def forward_test(self, | ||
lq, | ||
gt=None, | ||
meta=None, | ||
save_image=False, | ||
save_path=None, | ||
iteration=None): | ||
"""Testing forward function. | ||
Args: | ||
lq (Tensor): LQ image. | ||
gt (Tensor): GT image. | ||
meta (list[dict]): Meta data, such as path of GT file. | ||
Default: None. | ||
save_image (bool): Whether to save image. Default: False. | ||
save_path (str): Path to save image. Default: None. | ||
iteration (int): Iteration for the saving image name. | ||
Default: None. | ||
Returns: | ||
dict: Output results, which contain either key(s) | ||
1. 'eval_result'. | ||
2. 'lq', 'pred'. | ||
3. 'lq', 'pred', 'gt'. | ||
""" | ||
|
||
# generator | ||
with torch.no_grad(): | ||
sr_list, _ = self.generator.forward(lq) | ||
pred = sr_list[-1] | ||
pred = self.img_denormalize(pred) | ||
|
||
if gt is not None: | ||
gt = self.img_denormalize(gt) | ||
|
||
if self.test_cfg is not None and self.test_cfg.get('metrics', None): | ||
assert gt is not None, ( | ||
'evaluation with metrics must have gt images.') | ||
results = dict(eval_result=self.evaluate(pred, gt)) | ||
else: | ||
results = dict(lq=lq.cpu(), output=pred.cpu()) | ||
if gt is not None: | ||
results['gt'] = gt.cpu() | ||
|
||
# save image | ||
if save_image: | ||
if 'gt_path' in meta[0]: | ||
pred_path = meta[0]['gt_path'] | ||
else: | ||
pred_path = meta[0]['lq_path'] | ||
folder_name = osp.splitext(osp.basename(pred_path))[0] | ||
if isinstance(iteration, numbers.Number): | ||
save_path = osp.join(save_path, folder_name, | ||
f'{folder_name}-{iteration + 1:06d}.png') | ||
elif iteration is None: | ||
save_path = osp.join(save_path, f'{folder_name}.png') | ||
else: | ||
raise ValueError('iteration should be number or None, ' | ||
f'but got {type(iteration)}') | ||
mmcv.imwrite(tensor2img(pred), save_path) | ||
|
||
return results |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,95 @@ | ||
import numpy as np | ||
import pytest | ||
import torch | ||
from mmcv.runner import obj_from_dict | ||
from mmcv.utils.config import Config | ||
|
||
from mmedit.models.builder import build_model | ||
|
||
|
||
def test_dic_model(): | ||
|
||
model_cfg = dict( | ||
type='DIC', | ||
generator=dict( | ||
type='DICNet', | ||
in_channels=3, | ||
out_channels=3, | ||
mid_channels=48, | ||
num_blocks=6, | ||
hg_mid_channels=256, | ||
hg_num_keypoints=68, | ||
num_steps=4, | ||
upscale_factor=8, | ||
detach_attention=False), | ||
pixel_loss=dict(type='L1Loss', loss_weight=1.0, reduction='mean'), | ||
align_loss=dict(type='MSELoss', loss_weight=0.1, reduction='mean')) | ||
|
||
scale = 8 | ||
train_cfg = None | ||
test_cfg = Config(dict(metrics=['PSNR', 'SSIM'], crop_border=scale)) | ||
|
||
# build restorer | ||
restorer = build_model(model_cfg, train_cfg=train_cfg, test_cfg=test_cfg) | ||
|
||
# test attributes | ||
assert restorer.__class__.__name__ == 'DIC' | ||
|
||
# prepare data | ||
inputs = torch.rand(1, 3, 16, 16) | ||
targets = torch.rand(1, 3, 128, 128) | ||
heatmap = torch.rand(1, 68, 32, 32) | ||
data_batch = {'lq': inputs, 'gt': targets, 'heatmap': heatmap} | ||
|
||
# prepare optimizer | ||
optim_cfg = dict(type='Adam', lr=1e-4, betas=(0.9, 0.999)) | ||
optimizer = dict( | ||
generator=obj_from_dict(optim_cfg, torch.optim, | ||
dict(params=restorer.parameters()))) | ||
|
||
# test train_step and forward_test (cpu) | ||
outputs = restorer.train_step(data_batch, optimizer) | ||
assert isinstance(outputs, dict) | ||
assert isinstance(outputs['log_vars'], dict) | ||
assert isinstance(outputs['log_vars']['loss_pixel_v3'], float) | ||
assert outputs['num_samples'] == 1 | ||
assert outputs['results']['lq'].shape == data_batch['lq'].shape | ||
assert outputs['results']['gt'].shape == data_batch['gt'].shape | ||
assert torch.is_tensor(outputs['results']['output']) | ||
assert outputs['results']['output'].size() == (1, 3, 128, 128) | ||
|
||
# test train_step and forward_test (gpu) | ||
if torch.cuda.is_available(): | ||
restorer = restorer.cuda() | ||
data_batch = { | ||
'lq': inputs.cuda(), | ||
'gt': targets.cuda(), | ||
'heatmap': heatmap.cuda() | ||
} | ||
|
||
# train_step | ||
optimizer = dict( | ||
generator=obj_from_dict(optim_cfg, torch.optim, | ||
dict(params=restorer.parameters()))) | ||
outputs = restorer.train_step(data_batch, optimizer) | ||
assert isinstance(outputs, dict) | ||
assert isinstance(outputs['log_vars'], dict) | ||
assert isinstance(outputs['log_vars']['loss_pixel_v3'], float) | ||
assert outputs['num_samples'] == 1 | ||
assert outputs['results']['lq'].shape == data_batch['lq'].shape | ||
assert outputs['results']['gt'].shape == data_batch['gt'].shape | ||
assert torch.is_tensor(outputs['results']['output']) | ||
assert outputs['results']['output'].size() == (1, 3, 128, 128) | ||
|
||
# val_step | ||
data_batch.pop('heatmap') | ||
result = restorer.val_step(data_batch, meta=[{'gt_path': ''}]) | ||
assert isinstance(result, dict) | ||
assert isinstance(result['eval_result'], dict) | ||
assert result['eval_result'].keys() == set({'PSNR', 'SSIM'}) | ||
assert isinstance(result['eval_result']['PSNR'], np.float64) | ||
assert isinstance(result['eval_result']['SSIM'], np.float64) | ||
|
||
with pytest.raises(AssertionError): | ||
# evaluation with metrics must have gt images | ||
restorer(lq=inputs.cuda(), test_mode=True) |