Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Include MoG and ConditionalNorms. #1

Open
wants to merge 3 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
75 changes: 65 additions & 10 deletions src/embedding_scvi/_components.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,43 @@
from torch import nn


class ConditionalBatchNorm2d(nn.Module):
def __init__(self, num_features, num_classes, momentum, eps):
super().__init__()
self.num_features = num_features
self.bn = nn.BatchNorm1d(self.num_features, momentum=momentum, eps=eps, affine=False)
self.embed_scale = nn.Embedding(num_classes, self.num_features)
self.embed_bias = nn.Embedding(num_classes, self.num_features)
self.embed_scale.weight.data.normal_(1, 0.02) # Initialise scale at N(1, 0.02)
self.embed_bias.weight.data.zero_() # Initialise bias at 0

def forward(self, x, y):
out = self.bn(x)
gamma = self.embed_scale(y.long().ravel())
beta = self.embed_bias(y.long().ravel())
out = gamma.view(-1, self.num_features) * out + beta.view(-1, self.num_features)
Copy link
Member Author

@canergen canergen Sep 25, 2023

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Not sure the .view() thing is needed anymore?

Suggested change
out = gamma.view(-1, self.num_features) * out + beta.view(-1, self.num_features)
out = gamma * out + beta


return out

class ConditionalLayerNorm(nn.Module):
def __init__(self, num_features, num_classes):
super().__init__()
self.num_features = num_features
self.ln = nn.LayerNorm(self.num_features, elementwise_affine=False)
self.embed = nn.Embedding(num_classes, self.num_features * 2)
self.embed_scale = nn.Embedding(num_classes, self.num_features)
self.embed_bias = nn.Embedding(num_classes, self.num_features)
self.embed_scale.weight.data.normal_(1, 0.02) # Initialise scale at N(1, 0.02)
self.embed.weight.data[:, self.num_features:].zero_() # Initialise bias at 0

def forward(self, x, y):
out = self.ln(x)
gamma = self.embed_scale(y.long().ravel())
beta = self.embed_bias(y.long().ravel())
out = gamma.view(-1, self.num_features) * out + beta.view(-1, self.num_features)
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Same here.


return out

class MLPBlock(nn.Module):
"""Multi-layer perceptron block.

Expand Down Expand Up @@ -46,6 +83,8 @@ def __init__(
n_in: int,
n_out: int,
bias: bool = True,
cat_dim: int | None = None,
conditional: bool = False,
Comment on lines +86 to +87
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Needs documentation

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

It currently fails. Can you add something like batch_key (it's the site in mrVI) and ConditionalNorm is only computed on this. It would be 'assay_suspension' for census.

norm: Literal["batch", "layer"] | None = None,
norm_kwargs: dict | None = None,
activation: Literal["relu", "leaky_relu", "softmax", "softplus"] | None = None,
Expand All @@ -62,16 +101,28 @@ def __init__(
self.dropout = nn.Identity()
self.residual = residual

if norm == "batch":
self.norm = nn.BatchNorm1d(n_out, **self.norm_kwargs)
elif norm == "layer":
self.norm = nn.LayerNorm(n_out, **self.norm_kwargs)
elif norm is not None:
raise InvalidParameterError(
param="norm",
value=norm,
valid=["batch", "layer", None],
)
if conditional:
if norm == "batch":
self.norm = ConditionalBatchNorm2d(n_out, cat_dim, momentum=0.01, eps=0.001)
elif norm == "layer":
self.norm = ConditionalLayerNorm(n_out, cat_dim)
elif norm is not None:
raise InvalidParameterError(
param="norm",
value=norm,
valid=["batch", "layer", None],
)
else:
if norm == "batch":
self.norm = nn.BatchNorm1d(n_out, **self.norm_kwargs)
elif norm == "layer":
self.norm = nn.LayerNorm(n_out, **self.norm_kwargs)
elif norm is not None:
raise InvalidParameterError(
param="norm",
value=norm,
valid=["batch", "layer", None],
)

if activation == "relu":
self.activation = nn.ReLU(**self.activation_kwargs)
Expand Down Expand Up @@ -209,6 +260,7 @@ def __init__(
n_hidden: int,
n_layers: int,
bias: bool = True,
cat_dim: int | None = None,
norm: str | None = None,
norm_kwargs: dict | None = None,
activation: str | None = None,
Expand All @@ -231,6 +283,7 @@ def __init__(
n_in=n_in,
n_out=n_out,
bias=bias,
cat_dim=cat_dim,
norm=norm,
norm_kwargs=norm_kwargs,
activation=activation,
Expand Down Expand Up @@ -303,6 +356,7 @@ def __init__(
n_hidden: int,
n_layers: int,
bias: bool = True,
cat_dim: int | None = None,
norm: str | None = None,
norm_kwargs: dict | None = None,
activation: str | None = None,
Expand All @@ -320,6 +374,7 @@ def __init__(
n_hidden=n_hidden,
n_layers=n_layers,
bias=bias,
cat_dim=cat_dim,
norm=norm,
norm_kwargs=norm_kwargs,
activation=activation,
Expand Down
3 changes: 3 additions & 0 deletions src/embedding_scvi/_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -38,6 +38,7 @@ def __init__(self, adata: AnnData, **kwargs):
)
self.module = EmbeddingVAE(
n_vars=self.summary_stats.n_vars,
n_labels=self.summary_stats.n_labels,
categorical_covariates=categorical_covariates,
**kwargs,
)
Expand All @@ -63,6 +64,7 @@ def setup_anndata(
cls,
adata: AnnData,
layer: str | None = None,
labels_key: str | None = None,
categorical_covariate_keys: list[str] | None = None,
**kwargs,
):
Expand All @@ -77,6 +79,7 @@ def setup_anndata(
setup_method_args = cls._get_setup_method_args(**locals())
anndata_fields = [
fields.LayerField(REGISTRY_KEYS.X_KEY, layer, is_count_data=True),
fields.CategoricalObsField(REGISTRY_KEYS.LABELS_KEY, labels_key),
ExtendableCategoricalJointObsField(REGISTRY_KEYS.CAT_COVS_KEY, categorical_covariate_keys),
]
adata_manager = AnnDataManager(fields=anndata_fields, setup_method_args=setup_method_args)
Expand Down
73 changes: 61 additions & 12 deletions src/embedding_scvi/_module.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,10 +39,13 @@ def __init__(
self,
n_vars: int,
n_latent: int = 25,
n_labels: int | None = None,
categorical_covariates: list[int] | None = None,
likelihood: str = "zinb",
encoder_kwargs: dict | None = None,
decoder_kwargs: dict | None = None,
prior: str | None = None,
mixture_components: int = 50,
):
super().__init__()

Expand All @@ -53,6 +56,29 @@ def __init__(
self.encoder_kwargs = encoder_kwargs or {}
self.decoder_kwargs = decoder_kwargs or {}

self.prior = prior
if self.prior=='mog':
self.register_buffer(
"u_prior_logits", torch.ones([mixture_components]))
self.register_buffer(
"u_prior_means", torch.randn([n_latent, mixture_components]))
self.register_buffer(
"u_prior_scales", torch.zeros([n_latent, mixture_components]))
elif self.prior=='mog_celltype':
self.register_buffer(
"u_prior_logits", torch.ones([n_labels]))
self.register_buffer(
"u_prior_means", torch.randn([n_latent, n_labels]))
self.register_buffer(
"u_prior_scales", torch.zeros([n_latent, n_labels]))
Comment on lines +60 to +73
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Are these parameters updated during model training?

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Yes they are learnable and are updated in my hands.


self.covariates_encoder = nn.Identity()
if self.categorical_covariates is not None:
self.covariates_encoder = ExtendableEmbeddingList(
num_embeddings=self.categorical_covariates,
embedding_dim=self.n_latent,
)

encoder_dist_params = likelihood_to_dist_params("normal")
_encoder_kwargs = {
"n_hidden": 256,
Expand All @@ -62,6 +88,7 @@ def __init__(
"activation": "gelu",
"dropout_rate": 0.1,
"residual": True,
"cat_dim": self.covariates_encoder.num_embeddings,
}
_encoder_kwargs.update(self.encoder_kwargs)
self.encoder = MultiOutputMLP(
Expand All @@ -81,7 +108,9 @@ def __init__(
"activation": "gelu",
"dropout_rate": None,
"residual": True,
"cat_dim": self.covariates_encoder.num_embeddings
}

_decoder_kwargs.update(self.decoder_kwargs)
self.decoder = MultiOutputMLP(
n_in=self.n_latent,
Expand All @@ -91,13 +120,6 @@ def __init__(
**_decoder_kwargs,
)

self.covariates_encoder = nn.Identity()
if self.categorical_covariates is not None:
self.covariates_encoder = ExtendableEmbeddingList(
num_embeddings=self.categorical_covariates,
embedding_dim=self.n_latent,
)

def get_covariate_embeddings(
self,
covariate_indexes: list[int] | int | None,
Expand All @@ -113,25 +135,44 @@ def get_covariate_embeddings(

def _get_inference_input(self, tensors: dict[str, torch.Tensor]) -> dict:
x = tensors[REGISTRY_KEYS.X_KEY]
y = tensors[REGISTRY_KEYS.LABELS_KEY]
covariates = tensors.get(REGISTRY_KEYS.CAT_COVS_KEY, None)
return {
REGISTRY_KEYS.X_KEY: x,
"y": y,
REGISTRY_KEYS.CAT_COVS_KEY: covariates,
}

@auto_move_data
def inference(
self,
X: torch.Tensor,
y: torch.Tensor | None = None,
extra_categorical_covs: torch.Tensor | None = None,
subset_categorical_covs: int | list[int] | None = None,
):
X = torch.log1p(X)
library_size = torch.log(X.sum(dim=1, keepdim=True))
X = torch.log1p(X)

posterior_loc, posterior_scale = self.encoder(X)
posterior = dist.Normal(posterior_loc, posterior_scale + 1e-9)
prior = dist.Normal(torch.zeros_like(posterior_loc), torch.ones_like(posterior_scale))

if self.prior=='mog':
cats = dist.Categorical(logits=self.u_prior_logits)
normal_dists = dist.Normal(
self.u_prior_means,
torch.exp(self.u_prior_scales))
prior = dist.MixtureSameFamily(cats, normal_dists)
elif self.prior=='mog_celltype':
label_bias = 10.0 * torch.nn.functional.one_hot(labels, self.n_labels) if self.n_labels >= 2 else 0.0
cats = dist.Categorical(logits=self.u_prior_logits + label_bias)
normal_dists = dist.Normal(
self.u_prior_means,
torch.exp(self.u_prior_scales))
prior = dist.MixtureSameFamily(cats, normal_dists)
else:
prior = dist.Normal(torch.zeros_like(posterior_loc), torch.ones_like(posterior_scale))

z = posterior.rsample()

covariates_z = self.covariates_encoder(
Expand Down Expand Up @@ -216,10 +257,18 @@ def loss(
X = tensors[REGISTRY_KEYS.X_KEY]
posterior = inference_outputs[TENSORS_KEYS.QZ_KEY]
prior = inference_outputs[TENSORS_KEYS.PZ_KEY]
likelihood = generative_outputs[TENSORS_KEYS.PX_KEY]

# (n_obs, n_latent) -> (n_obs,)
kl_div = dist.kl_divergence(posterior, prior).sum(dim=-1)
if self.prior=='mog' or self.prior=='mog_celltype':
u = posterior.rsample(sample_shape=(10,))
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Should we add the sample shape as a parameter?

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Potentially, in mrVI we fixed it. We should then expose it through model.train.

# (n_obs, n_latent) -> (n_obs,)
kl_z = prior.log_prob(u) - posterior.log_prob(u)
kl_div = kl_z.sum(-1)
else:
# (n_obs, n_latent) -> (n_obs,)
kl_div = dist.kl_divergence(posterior, prior).sum(dim=-1)


likelihood = generative_outputs[TENSORS_KEYS.PX_KEY]
weighted_kl_div = kl_weight * kl_div
# (n_obs, n_vars) -> (n_obs,)
reconstruction_loss = -likelihood.log_prob(X).sum(dim=-1)
Expand Down