Skip to content

Do you like Quick, Draw? Well what if you could train/predict doodles drawn inside Streamlit? Also draws lines, circles and boxes over background images for annotation.

License

Notifications You must be signed in to change notification settings

Yangxiaojun1230/streamlit-drawable-canvas

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

50 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Streamlit - Drawable Canvas

Streamlit component which provides a sketching canvas using Fabric.js.

Features

  • Draw freely, lines, circles and boxes on the canvas, with options on stroke & fill
  • Rotate, skew, scale, move any object of the canvas on demand
  • Select a background color or image to draw on
  • Get image data and every drawn object properties back to Streamlit !
  • Choose to fetch back data in realtime or on demand

Installation

pip install streamlit-drawable-canvas

Example Usage

import streamlit as st
from streamlit_drawable_canvas import st_canvas

# Specify canvas parameters in application
stroke_width = st.sidebar.slider("Stroke width: ", 1, 25, 3)
stroke_color = st.sidebar.beta_color_picker("Stroke color hex: ")
bg_color = st.sidebar.beta_color_picker("Background color hex: ", "#eee")
bg_image = st.sidebar.file_uploader("Background image:", type=["png", "jpg"])
drawing_mode = st.sidebar.selectbox(
    "Drawing tool:", ("freedraw", "line", "rect", "circle", "transform")
)
realtime_update = st.sidebar.checkbox("Update in realtime?", True)
update_button = False
if not realtime_update:
    update_button = st.sidebar.button('Send data to Streamlit')


# Create a canvas component
canvas_result = st_canvas(
    fill_color="rgba(255, 165, 0, 0.3)",  # Fixed fill color with some opacity
    stroke_width=stroke_width,
    stroke_color=stroke_color,
    background_color="" if bg_image else bg_color,
    background_image=Image.open(bg_image) if bg_image else None,
    update_streamlit=realtime_update or update_button,
    height=150,
    drawing_mode=drawing_mode,
    key="canvas",
)

# Do something interesting with the image data
if canvas_result.image_data is not None:
    st.image(canvas_result.image_data)
    st.dataframe(pd.json_normalize(canvas_result.json_data["objects"]))

Development

Install

  • JS side
cd frontend
npm install
  • Python side
conda create -n streamlit-drawable-canvas python=3.7
conda activate streamlit-drawable-canvas
pip install -e .

Run

Both webpack dev server and Streamlit should run at the same time.

  • JS side
cd frontend
npm run start
  • Python side
streamlit run app.py

Cypress integration tests

  • Install Cypress: cd e2e; npm i or npx install cypress (with --force if cache problem)
  • Start Streamlit frontend server: cd streamlit_drawable_canvas/frontend; npm run start
  • Start Streamlit test script: streamlit run e2e/app_to_test.py
  • Start Cypress app: cd e2e; npm run cypress:open

References

About

Do you like Quick, Draw? Well what if you could train/predict doodles drawn inside Streamlit? Also draws lines, circles and boxes over background images for annotation.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • TypeScript 57.2%
  • Python 30.6%
  • JavaScript 8.4%
  • HTML 3.6%
  • CSS 0.2%