Tool for converting LLMs from uni-directional to bi-directional for tasks like classification and sentence embeddings. Compatible with 🤗 transformers.
- LLaMA
- Mistral
- Qwen2
- OpenELM
-
python -m pip install -U billm
-
Specify start index for bi-directional layers via
export BiLLM_START_INDEX={layer_index}
. if not specified, default is 0, i.e., all layers are bi-directional. If set to -1, BiLLM is disabled. -
Import LLMs from BiLLM and initialize them as usual with transformers.
- from transformers import (
- LLamaModel,
- LLamaForCausalLM,
- LLamaForSequenceClassification,
- MistralModel,
- MistralForCausalLM,
- MistralForSequenceClassification
- Qwen2Model,
- Qwen2ForCausalLM,
- Qwen2ForSequenceClassification
- )
+ from billm import (
+ LLamaModel,
+ LLamaForCausalLM,
+ LLamaForSequenceClassification,
+ LLamaForTokenClassification,
+ MistralModel,
+ MistralForCausalLM,
+ MistralForSequenceClassification,
+ MistralForTokenClassification,
+ Qwen2Model,
+ Qwen2ForCausalLM,
+ Qwen2ForSequenceClassification,
+ Qwen2ForTokenClassification
+ OpenELMModel,
+ OpenELMForCausalLM,
+ OpenELMForSequenceClassification,
+ OpenELMForTokenClassification
+ )
training:
$ cd examples
$ WANDB_MODE=disabled BiLLM_START_INDEX=0 CUDA_VISIBLE_DEVICES=3 python billm_ner.py \
--model_name_or_path mistralai/Mistral-7B-v0.1 \
--dataset_name_or_path conll2003 \
--push_to_hub 0
inference:
from transformers import AutoTokenizer, pipeline
from peft import PeftModel, PeftConfig
from billm import MistralForTokenClassification
label2id = {'O': 0, 'B-PER': 1, 'I-PER': 2, 'B-ORG': 3, 'I-ORG': 4, 'B-LOC': 5, 'I-LOC': 6, 'B-MISC': 7, 'I-MISC': 8}
id2label = {v: k for k, v in label2id.items()}
model_id = 'WhereIsAI/billm-mistral-7b-conll03-ner'
tokenizer = AutoTokenizer.from_pretrained(model_id)
peft_config = PeftConfig.from_pretrained(model_id)
model = MistralForTokenClassification.from_pretrained(
peft_config.base_model_name_or_path,
num_labels=len(label2id), id2label=id2label, label2id=label2id
)
model = PeftModel.from_pretrained(model, model_id)
# merge and unload is necessary for inference
model = model.merge_and_unload()
token_classifier = pipeline("token-classification", model=model, tokenizer=tokenizer, aggregation_strategy="simple")
sentence = "I live in Hong Kong. I am a student at Hong Kong PolyU."
tokens = token_classifier(sentence)
print(tokens)
refer to AnglE: https://github.com/SeanLee97/AnglE
If you use this toolkit in your work, please cite the following paper:
- For sentence embeddings modeling:
@inproceedings{li2024bellm,
title = "BeLLM: Backward Dependency Enhanced Large Language Model for Sentence Embeddings",
author = "Li, Xianming and Li, Jing",
booktitle = "Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics",
year = "2024",
publisher = "Association for Computational Linguistics"
}
- For other tasks:
@article{li2023label,
title={Label supervised llama finetuning},
author={Li, Zongxi and Li, Xianming and Liu, Yuzhang and Xie, Haoran and Li, Jing and Wang, Fu-lee and Li, Qing and Zhong, Xiaoqin},
journal={arXiv preprint arXiv:2310.01208},
year={2023}
}