Skip to content
/ DN4 Public

Pytorch code of "Revisiting Local Descriptor based Image-to-Class Measure for Few-shot Learning", CVPR 2019.

License

Notifications You must be signed in to change notification settings

WenbinLee/DN4

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

70 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DN4 in PyTorch (2023 Version)

We provide a PyTorch implementation of DN4 for few-shot learning. If you use this code, please cite:

Revisiting Local Descriptor based Image-to-Class Measure for Few-shot Learning.
Wenbin Li, Lei Wang, Jinglin Xu, Jing Huo, Yang Gao and Jiebo Luo. In CVPR 2019.

Prerequisites

  • Linux
  • Python 3.8
  • Pytorch 1.7.0
  • GPU + CUDA CuDNN
  • pillow, torchvision, scipy, numpy

Getting Started

Installation

  • Clone this repo:
git clone https://github.com/WenbinLee/DN4.git
cd DN4
  • Install PyTorch 1.7.0 and other dependencies.

Datasets

Caltech-UCSD Birds-200-2011, Standford Cars, Standford Dogs, miniImageNet and tieredImageNet are available at Google Drive and 百度网盘(提取码:yr1w).

miniImageNet Few-shot Classification

  • Train a 5-way 1-shot model based on Conv64:
python Train_DN4.py --dataset_dir ./path/to/miniImageNet --data_name miniImageNet --encoder_model Conv64F_Local --way_num 5 --shot_num 1
  • Train a 5-way 1-shot model based on ResNet12:
python Train_DN4.py --dataset_dir ./path/to/miniImageNet --data_name miniImageNet --encoder_model ResNet12 --way_num 5 --shot_num 1
  • Test the model (specify the dataset_dir, encoder_model, and data_name first):
python Test_DN4.py --resume ./results/SGD_Cosine_Lr0.05_DN4_Conv64F_Local_Epoch_30_miniImageNet_84_84_5Way_1Shot/ --encoder_model Conv64F_Local

Latest results on miniImageNet (2023)

(Compared to the originally reported results in the paper. * denotes that ResNet256F is used.)

Method Backbone 5-way 1-shot 5-way 5-shot
2019 Version 2023 Version 2019 Version 2023 Version
DN4 Conv64F_Local 51.24 51.97 71.02 73.19
ResNet12 54.37* 61.23 74.44* 75.66
  • The results on the miniImageNet dataset reported in the orinigal paper:

Citation

If you use this code for your research, please cite our paper.

@inproceedings{DN4_CVPR_2019,
  author       = {Wenbin Li and
                  Lei Wang and
                  Jinglin Xu and
                  Jing Huo and
                  Yang Gao and
                  Jiebo Luo},
  title        = {Revisiting Local Descriptor Based Image-To-Class Measure for Few-Shot Learning},
  booktitle    = {{IEEE} Conference on Computer Vision and Pattern Recognition (CVPR)},
  pages        = {7260--7268},
  year         = {2019}
}

About

Pytorch code of "Revisiting Local Descriptor based Image-to-Class Measure for Few-shot Learning", CVPR 2019.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages