Skip to content

This is the unofficial version of MGN, Pytorch的MGN复现版本

License

Notifications You must be signed in to change notification settings

WangTaoAs/MGN_ReID

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

(MGN_ReID) Multiple Granularity Network 多粒度行人重识别网络

Reproduction of paper: https://arxiv.org/abs/1804.01438 Learning Discriminative Features with Multiple Granularities for Person Re-Identification

Training Step

  • Prepare data

    Donload: (Now support 4 datasets)

    Put the data into ==/dataset== fold

  • Modify the config.py

    • add dataset directoty to --root
    • change dataset name --dataset
    • modify other parameter
  • Start to train

    run python train.py

  • Test

    • After finishing the training, modify the --test_weight in config.py, then run python test.py
@ARTICLE{2018arXiv180401438W,
    author = {{Wang}, G. and {Yuan}, Y. and {Chen}, X. and {Li}, J. and {Zhou}, X.},
    title = "{Learning Discriminative Features with Multiple Granularities for Person Re-Identification}",
    journal = {ArXiv e-prints},
    archivePrefix = "arXiv",
    eprint = {1804.01438},
    primaryClass = "cs.CV",
    keywords = {Computer Science - Computer Vision and Pattern Recognition},
    year = 2018,
    month = apr,
    adsurl = {http://adsabs.harvard.edu/abs/2018arXiv180401438W},
    adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}

MGN论文复现: https://arxiv.org/abs/1804.01438 Learning Discriminative Features with Multiple Granularities for Person Re-Identification

训练步骤

  • 数据准备

    下载: (目前支持4个数据集,后续会持续更新)

    将数据放入 /dataset文件下

  • 修改 config.py

    • 在 --root 中修改数据集位置
    • 更改数据集名字 --dataset ('market1501', 'occ_duke',......)
    • 更改其他参数
  • 开始训练

    运行 python train.py

  • 测试

    • 在训练完后 修改config.py中的--test_weight, 更改为得到的pth的地址, 然后运行 python test.py

About

This is the unofficial version of MGN, Pytorch的MGN复现版本

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages