Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

REST API for ParsCit #7

Merged
merged 10 commits into from
Sep 17, 2018
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 4 additions & 1 deletion Dockerfile
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
FROM python:2

ENV ENVIRONMENT prod
ENV ENVIRONMENT prod
ENV NUM_WORKERS 1

WORKDIR /usr/src

Expand All @@ -12,3 +13,5 @@ RUN pip install --no-cache-dir Theano==1.0.2 numpy==1.14.5 gensim==3.5.0

RUN echo "[global]\nfloatX = float32" >> ~/.theanorc
RUN echo "[blas]\nldflags = -lblas -lgfortran" >> ~/.theanorc

EXPOSE 8000
137 changes: 0 additions & 137 deletions Predictor.py

This file was deleted.

28 changes: 25 additions & 3 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -9,22 +9,30 @@ Neural ParsCit is a citation string parser which parses reference strings into i

To use the tagger, you need Python 2.7, with Numpy, Theano and Gensim installed.

You can use environmental variables to set the following:
- `MODEL_PATH`: Path to the model's parameters
- `WB_PATH`: Path to the word embeddings
- `TIMEOUT`: Timeout for gunicorn when starting the Flask app. Increase this if you experience the Flask app is unable to start as the model building process takes too long. [Default: 60]
- `NUM_WORKERS`: Number of workers which gunicorn spawns. [Default: 1]

### Using virtualenv in Linux systems

```
virtualenv -ppython2.7 .venv
source .venv/bin/activate
pip install -r requirements.txt
pip install -r requirements/<env>.txt
```

Where `<env>` is `{prod, dev, test}`

### Using Docker

1. Build the image: `docker build -t theano-gensim - < Dockerfile`
1. Run the repo mounted to the container: `docker run -it -v /path/to/Neural-ParsCit:/usr/src --name np theano-gensim:latest /bin/bash`
1. Run the repo mounted to the container: `docker run -it -v $(pwd):/usr/src --name np theano-gensim:latest /bin/bash`

## Word Embeddings

The word embeddings do not come with this repository. You can obtain the [word embeddings without `<UNK>`](http://wing.comp.nus.edu.sg/~wing.nus/resources/NParsCit/vectors.tar.gz) (not recommended for v1.0.3) or [word embeddings with `<UNK>`](http://wing.comp.nus.edu.sg/~wing.nus/resources/NParsCit/vectors_with_unk.tar.gz) and the [word frequency](http://wing.comp.nus.edu.sg/~wing.nus/resources/NParsCit/freq) (deprecated in v1.0.3 as the entire word vectors can be loaded with less memory) from WING website. Please read the next section on availability of `<UNK>` in word embeddings.
The word embeddings do not come with this repository. You can obtain the [word embeddings with `<UNK>`](http://wing.comp.nus.edu.sg/~wing.nus/resources/NParsCit/vectors_with_unk.tar.gz) from WING website. Please read the next section on availability of `<UNK>` in word embeddings.

You will need to extract the content of the word embedding archive (`vectors_with_unk.tar.gz`) to the root directory for this repository by running `tar xfz vectors_with_unk.tar.gz`.

Expand All @@ -34,8 +42,11 @@ If the word embeddings provided do not have `<UNK>`, your instance will not bene

Without `<UNK>`, at most 7.5 GB of memory is required as the entire word vectors need to be instantiated in memory to create the new matrix. Comparing with embeddings with `<UNK>`, which is much lower as it only requires at most 4.5 GB.


## Parse citation strings

### Command Line

The fastest way to use the parser is to run state-of-the-art pre-trained model as follows:

```
Expand All @@ -46,6 +57,17 @@ The script can run interactively or input can be passed in a file. In the intera

The state-of-the-art trained model is provided in the models folder and is named neuralParsCit. The binary file for word embeddings is provided in the docker image of the current version of neural ParsCit. The hyper parameter ```discarded``` is the number of embeddings not used in our model. Retained words have a frequency of more than 0 in the ACM citation literature from 1994-2014.

### Using a Web Server

The web server (a Flask app) provides REST API.

Running the web server,
`docker run --rm -it -p 8000:8000 -e TIMEOUT=60 -v $(pwd):/usr/src --name np theano-gensim:latest /bin/bash`

In the container, `gunicorn -b 0.0.0.0:8000 -w $NUM_WORKERS --timeout $TIMEOUT run_app:app`

The REST API documentation can be found at `http//localhost:8000/docs`


## Train a model

Expand Down
66 changes: 66 additions & 0 deletions app/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,66 @@
import os
import logging
from flask import Flask, Blueprint, jsonify, g
from flask_restful_swagger_2 import Api, get_swagger_blueprint
from flask_swagger_ui import get_swaggerui_blueprint
from app.resources.parscit import Parse, ParseBatch
from utils import get_model


def create_app(config):
"""
Wrapper function for Flask app
params:
config: Config
"""
app = Flask(__name__)
app.config.from_object(config)

model_path = os.path.abspath(os.getenv('MODEL_PATH',
default='models/neuralParscit/'))
word_emb_path = os.path.abspath(os.getenv('WORD_EMB_PATH',
default='vectors_with_unk.kv'))

with app.app_context():
logging.info("Loading model from {} and using word embeddings from {}".format(model_path, word_emb_path))
model, inference = get_model(model_path, word_emb_path)
setattr(app, 'model', model)
setattr(app, 'inference', inference)
setattr(app, 'word_to_id', {v:i for i, v in model.id_to_word.items()})
setattr(app, 'char_to_id', {v:i for i, v in model.id_to_char.items()})

API_DOC_PATH = '/docs'
SWAGGER_PATH = '/swagger'

api_bp = Blueprint('api', __name__)
api = Api(api_bp, add_api_spec_resource=False)
api.add_resource(Parse, '/parscit/parse')
api.add_resource(ParseBatch, '/parscit/parse/batch')

docs = [api.get_swagger_doc()]

swagger_ui_blueprint = get_swaggerui_blueprint(
API_DOC_PATH,
SWAGGER_PATH + '.json',
config={
'app_name': 'ParsCit API'
}
)

app.register_blueprint(api.blueprint)
app.register_blueprint(get_swagger_blueprint(docs, SWAGGER_PATH,
title='ParsCit API',
api_version='1.0',
base_path='/'))
app.register_blueprint(swagger_ui_blueprint, url_prefix=API_DOC_PATH)

@app.errorhandler(404)
def not_found(error):
"""
Handles URLs that are not specified
"""
return jsonify({
'message': "API doesn't exist"
}), 404

return app
Empty file added app/resources/__init__.py
Empty file.
99 changes: 99 additions & 0 deletions app/resources/parscit.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,99 @@
from __future__ import print_function
import numpy as np
from flask import abort, current_app, g
from flask_restful import reqparse
from flask_restful_swagger_2 import swagger, Resource
from app.resources.schemas import Entity, ParseResponse, ParseBatchResponse
from app.utils import get_model
from utils import create_input
from loader import prepare_dataset

class Parse(Resource):
"""
"""
parser = reqparse.RequestParser()
parser.add_argument('string', type=unicode, trim=True, required=True, location='json')
@swagger.doc({
'description': 'Parse a single string and return the associated entity for each token in the string.',
'reqparser': {
'name': 'Single Submission Request',
'parser': parser
},
'responses': {
'200': {
'description': 'Successfully parsed provided string.',
'schema': ParseResponse
}
}
})

def post(self):
"""
Parse a single string and return the associated entity for each token in the string.
"""
args = self.parser.parse_args()
ref_string = args.get('string')
if ref_string is None or ref_string == "":
# Hackish way as reqparse can't catch empty string
abort(400, description='string is empty or not provided.')

tokens = ref_string.split(" ")

data = prepare_dataset([[[token] for token in tokens]],
current_app.word_to_id,
current_app.char_to_id,
current_app.model.parameters['lower'],
True)

model_inputs = create_input(data[0], current_app.model.parameters, False)
y_pred = np.array(current_app.inference[1](*model_inputs))[1:-1]
tags = [current_app.model.id_to_tag[y_pred[i]] for i in range(len(y_pred))]

response = ParseResponse(reference_string=ref_string,
data=[Entity(term=term, entity=entity)
for term, entity in zip(tokens, tags)])
return response

class ParseBatch(Resource):
parser = reqparse.RequestParser()
parser.add_argument('strings', type=unicode, action='append', required=True, location='json')
@swagger.doc({
'description': 'Parse multiple string and return the associated entity for each token in each string.',
'reqparser': {
'name': 'Mutliple Submission Request',
'parser': parser
},
'responses': {
'200': {
'description': 'Successfully parsed provided strings.',
'schema': ParseBatchResponse
}
}
})
def post(self):
"""
Parse multiple string and return the associated entity for each token in each string.
"""
args = self.parser.parse_args()
ref_strings = args.get('strings')

tokens = [[[token] for token in ref_string.split(" ")] for ref_string in ref_strings]
data = prepare_dataset(tokens,
current_app.word_to_id,
current_app.char_to_id,
current_app.model.parameters['lower'],
True)

tagged = []

for index, datum in enumerate(data):
model_inputs = create_input(datum, current_app.model.parameters, False)
y_pred = np.array(current_app.inference[1](*model_inputs))[1:-1]
tags = [current_app.model.id_to_tag[y_pred[i]] for i in range(len(y_pred))]

tagged.append([Entity(term=term, entity=entity)
for term, entity in zip(ref_strings[index].split(" "), tags)])

response = ParseBatchResponse(reference_strings=ref_strings,
data=tagged)
return response
Loading