Skip to content

WHU-USI3DV/MENet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MENet

This is the official code for the paper 《MENet: Map-enhanced 3D object detection in bird’s-eye view for LiDAR point clouds》.

demo_nus

News

Catalogue

Performance

Performance without CBGS:

Method Modality mAP NDS Weights
CenterPoint L 52.7 61.2 Google Drive
MENet L+M 56.9 63.4 Google Drive
SECOND L 35.7 51.3 Google Drive
ME SECOND L+M 43.1 55.5 Google Drive

Performance with CBGS:

Method Modality mAP NDS Weights
CenterPoint L 56.2 64.7 TODO
MENet L+M 56.7 65.5 TODO
SECOND L 47.6 59.2 TODO
ME SECOND L+M 50.9 61.4 TODO

Installation

Tested Environment

Steps

  1. Install the package listed above. We recommend that you create a new conda environment. To install the mmxxx series packages, you can click the hyperlinks and follow the instructions in the official documentations.
  2. Install cuda extension.
python setup.py develop

Dataset Preparation

You can download, organize and prepare the dataset according to the documentory of mmdetection3d(nuScenes | Lyft).

Train

Train on multiple GPUs

export CUDA_VISIBLE_DEVICES=0,1,2,3 # 4 GPUs for example
export GPU_NUM=4
export CONFIG_FILE="configs/menet.py" # the config of any model
export WORK_DIR="./work_dirs/menet" # the output directory
./tools/dist_train.sh ${CONFIG_FILE}  ${GPU_NUM} --work-dir ${WORK_DIR} --deterministic

Train on single GPU

python tools/train.py ${CONFIG_FILE} --work-dir ${WORK_DIR} --deterministic

Evaluate

Evaluate on multiple GPUs

export CUDA_VISIBLE_DEVICES=0,1,2,3 # 4 GPUs for example
export GPU_NUM=4
export EVAL_METRICS=bbox

export CONFIG_FILE=./configs/menet.py
export CHECKPOINT_FILE="path of the weight of the model"
export RESULT_FILE=./work_dirs/menet/results.pkl

./tools/dist_test.sh ${CONFIG_FILE}  ${CHECKPOINT_FILE}  ${GPU_NUM} --out ${RESULT_FILE} --eval ${EVAL_METRICS}

Evaluate on single GPU

python tools/test.py ${CONFIG_FILE}  ${CHECKPOINT_FILE} --eval ${EVAL_METRICS}

Related Projects

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages