This is the official code for the paper 《MENet: Map-enhanced 3D object detection in bird’s-eye view for LiDAR point clouds》.
- 2024.02.14: The official code of MENet is published.
- 2023.05.19: 《MENet: Map-enhanced 3D object detection in bird’s-eye view for LiDAR point clouds》 is published on JAG.
Performance without CBGS:
Method | Modality | mAP | NDS | Weights |
---|---|---|---|---|
CenterPoint | L | 52.7 | 61.2 | Google Drive |
MENet | L+M | 56.9 | 63.4 | Google Drive |
SECOND | L | 35.7 | 51.3 | Google Drive |
ME SECOND | L+M | 43.1 | 55.5 | Google Drive |
Performance with CBGS:
Method | Modality | mAP | NDS | Weights |
---|---|---|---|---|
CenterPoint | L | 56.2 | 64.7 | TODO |
MENet | L+M | 56.7 | 65.5 | TODO |
SECOND | L | 47.6 | 59.2 | TODO |
ME SECOND | L+M | 50.9 | 61.4 | TODO |
- pyTorch
- mmcv-full==1.4.1
- mmsegmentation==0.14.1
- mmdet==2.14.0
- mmdet3d==0.17.1
- Pillow==8.4.0
- Install the package listed above. We recommend that you create a new conda environment. To install the
mm
xxx series packages, you can click the hyperlinks and follow the instructions in the official documentations. - Install cuda extension.
python setup.py develop
You can download, organize and prepare the dataset according to the documentory of mmdetection3d(nuScenes | Lyft).
export CUDA_VISIBLE_DEVICES=0,1,2,3 # 4 GPUs for example
export GPU_NUM=4
export CONFIG_FILE="configs/menet.py" # the config of any model
export WORK_DIR="./work_dirs/menet" # the output directory
./tools/dist_train.sh ${CONFIG_FILE} ${GPU_NUM} --work-dir ${WORK_DIR} --deterministic
python tools/train.py ${CONFIG_FILE} --work-dir ${WORK_DIR} --deterministic
export CUDA_VISIBLE_DEVICES=0,1,2,3 # 4 GPUs for example
export GPU_NUM=4
export EVAL_METRICS=bbox
export CONFIG_FILE=./configs/menet.py
export CHECKPOINT_FILE="path of the weight of the model"
export RESULT_FILE=./work_dirs/menet/results.pkl
./tools/dist_test.sh ${CONFIG_FILE} ${CHECKPOINT_FILE} ${GPU_NUM} --out ${RESULT_FILE} --eval ${EVAL_METRICS}
python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} --eval ${EVAL_METRICS}