Skip to content
/ DANNet Public

(CVPR2021) DANNet: A One-Stage Domain Adaptation Network for Unsupervised Nighttime Semantic Segmentation

License

Notifications You must be signed in to change notification settings

W-zx-Y/DANNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DANNet: A One-Stage Domain Adaptation Network for Unsupervised Nighttime Semantic Segmentation

CVPR2021(oral) [arxiv] Framework

Requirements

  • python3.7
  • pytorch==1.5.0
  • cuda10.2

Datasets

Cityscapes: Please follow the instructions in Cityscape to download the training set.

Dark-Zurich: Please follow the instructions in Dark-Zurich to download the training/val/test set.

Testing

If needed, please directly download the visualization results of our method for Dark-zurich-val and Dark-zurich-test. Framework To reproduce the reported results in our paper (on Dark-Zurich val), please follow these steps:

Step1: download the [trained models](https://www.dropbox.com/s/fmlq806p2wqf311/trained_models.zip?dl=0) and put it in the root.
Step2: change the data and model paths in configs/test_config.py
Step3: run "python evaluation.py"
Step4: run "python compute_iou.py"

If you want to evaluate your methods on the test set, please visit this challenge for more details.

Training

If you want to train your own models, please follow these steps:

Step1: download the [pre-trained models](https://www.dropbox.com/s/3n1212kxuv82uua/pretrained_models.zip?dl=0) and put it in the root.
Step2: change the data and model paths in configs/train_config.py
Step3: run "python train.py"

Acknowledgments

The code is based on AdaptSegNet, PSPNet, Deeplab-v2 and RefineNet.

Related works

Citation

If you think this paper is useful for your research, please cite our paper:

@InProceedings{WU_2021_CVPR,
author = {Wu, Xinyi and Wu, Zhenyao and Guo, Hao and Ju, Lili and Wang, Song},
title = {DANNet: A One-Stage Domain Adaptation Network for Unsupervised Nighttime Semantic Segmentation},
booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2021}
}
@article{wu2021one,
title={A One-Stage Domain Adaptation Network with Image Alignment for Unsupervised Nighttime Semantic Segmentation},
author={Wu, Xinyi and Wu, Zhenyao and Ju, Lili and Wang, Song},
journal={IEEE Transactions on Pattern Analysis \& Machine Intelligence},
number={01},
pages={1--1},
year={2021}
}

Contact

About

(CVPR2021) DANNet: A One-Stage Domain Adaptation Network for Unsupervised Nighttime Semantic Segmentation

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages