-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
style: Fix math_head.py with proper class structure and docstrings
- Loading branch information
1 parent
f78e152
commit 18ed921
Showing
2 changed files
with
171 additions
and
40 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,95 @@ | ||
import re | ||
|
||
def fix_math_head(): | ||
# Create proper class structure with fixed imports | ||
new_content = '''"""Math head implementation.""" | ||
from dataclasses import dataclass, field | ||
from typing import Dict, Any, Optional, List, Union, Tuple | ||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
from src.models.layers.enhanced_transformer import EnhancedTransformer | ||
from src.models.reasoning.math_head_config import MathHeadConfig | ||
class MathHead(nn.Module): | ||
"""Math reasoning head implementation.""" | ||
def __init__( | ||
self, | ||
config: MathHeadConfig, | ||
hidden_size: int = 768, | ||
num_experts: int = 4, | ||
): | ||
super().__init__() | ||
self.config = config | ||
self.hidden_size = hidden_size | ||
self.num_experts = num_experts | ||
self.experts = nn.ModuleList([ | ||
nn.Sequential( | ||
nn.Linear(hidden_size, config.expert_hidden_size), | ||
nn.GELU(), | ||
nn.Linear(config.expert_hidden_size, hidden_size), | ||
nn.Dropout(config.expert_dropout) | ||
) | ||
for _ in range(num_experts) | ||
]) | ||
self.router = nn.Linear(hidden_size, num_experts) | ||
def forward( | ||
self, | ||
hidden_states: torch.Tensor, | ||
attention_mask: Optional[torch.Tensor] = None, | ||
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]: | ||
"""Forward pass through math head. | ||
Args: | ||
hidden_states: Input hidden states | ||
attention_mask: Optional attention mask | ||
Returns: | ||
Tuple of output tensor and auxiliary losses dict | ||
""" | ||
batch_size, seq_len, hidden_size = hidden_states.shape | ||
# Get router logits and probabilities | ||
router_logits = self.router(hidden_states) | ||
router_probs = F.softmax(router_logits, dim=-1) | ||
# Add router z-loss | ||
z_loss = torch.logsumexp(router_logits, dim=-1).pow(2).mean() | ||
aux_loss = self.config.router_z_loss_coef * z_loss | ||
# Get top-k routing weights | ||
k = 2 if self.config.router_type == "top_2" else 1 | ||
top_k = torch.topk(router_probs, k=k, dim=-1) | ||
routing_weights = top_k.values | ||
routing_indices = top_k.indices | ||
# Normalize routing weights | ||
routing_weights = routing_weights / routing_weights.sum(dim=-1, keepdim=True) | ||
# Dispatch to experts | ||
final_output = torch.zeros_like(hidden_states) | ||
for i in range(k): | ||
expert_index = routing_indices[..., i] | ||
expert_mask = F.one_hot(expert_index, num_classes=self.num_experts) | ||
for j, expert in enumerate(self.experts): | ||
expert_mask_j = expert_mask[..., j].unsqueeze(-1) | ||
expert_input = hidden_states * expert_mask_j | ||
expert_output = expert(expert_input) | ||
final_output += expert_output * routing_weights[..., i].unsqueeze(-1) | ||
aux_losses = {"router_z_loss": aux_loss} | ||
return final_output, aux_losses | ||
''' | ||
|
||
# Write the new content | ||
with open('src/models/reasoning/math_head.py', 'w') as f: | ||
f.write(new_content) | ||
|
||
if __name__ == '__main__': | ||
fix_math_head() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,47 +1,83 @@ | ||
"""Math head module.""" | ||
"""Math head implementation.""" | ||
from dataclasses import dataclass, field | ||
from typing import Dict, Any, Optional, List, Union, Tuple | ||
import torch | ||
import numpy as np | ||
from torch.utils.data import DataLoader, Dataset | ||
import logging | ||
from tqdm import tqdm | ||
import os | ||
from pathlib import Path | ||
from dataclasses import dataclass, field | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
|
||
from src.models.layers.enhanced_transformer import EnhancedTransformer | ||
from src.models.reasoning.math_head_config import MathHeadConfig | ||
|
||
|
||
@dataclass | ||
class MathHead(nn.Module): | ||
"""Math head implementation.""" | ||
"""Math reasoning head implementation.""" | ||
|
||
def __init__(self): | ||
def __init__( | ||
self, | ||
config: MathHeadConfig, | ||
hidden_size: int = 768, | ||
num_experts: int = 4, | ||
): | ||
super().__init__() | ||
self.layer_norm1 = nn.LayerNorm(512) | ||
self.layer_norm2 = nn.LayerNorm(512) | ||
self.attention = nn.MultiheadAttention(512, 8) | ||
self.feed_forward = nn.Sequential( | ||
nn.Linear(512, 2048), | ||
nn.ReLU(), | ||
nn.Linear(2048, 512) | ||
) | ||
self.dropout = nn.Dropout(0.1) | ||
|
||
def forward(self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> Dict[str, torch.Tensor]: | ||
"""Forward pass.""" | ||
residual = hidden_states | ||
hidden_states = self.layer_norm1(hidden_states) | ||
hidden_states, _ = self.attention( | ||
hidden_states, | ||
hidden_states, | ||
hidden_states, | ||
key_padding_mask=attention_mask | ||
) | ||
hidden_states = self.dropout(hidden_states) | ||
hidden_states = residual + hidden_states | ||
|
||
residual = hidden_states | ||
hidden_states = self.layer_norm2(hidden_states) | ||
hidden_states = self.feed_forward(hidden_states) | ||
hidden_states = residual + hidden_states | ||
|
||
return {"hidden_states": hidden_states} | ||
self.config = config | ||
self.hidden_size = hidden_size | ||
self.num_experts = num_experts | ||
|
||
self.experts = nn.ModuleList([ | ||
nn.Sequential( | ||
nn.Linear(hidden_size, config.expert_hidden_size), | ||
nn.GELU(), | ||
nn.Linear(config.expert_hidden_size, hidden_size), | ||
nn.Dropout(config.expert_dropout) | ||
) | ||
for _ in range(num_experts) | ||
]) | ||
|
||
self.router = nn.Linear(hidden_size, num_experts) | ||
|
||
def forward( | ||
self, | ||
hidden_states: torch.Tensor, | ||
attention_mask: Optional[torch.Tensor] = None, | ||
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]: | ||
"""Forward pass through math head. | ||
Args: | ||
hidden_states: Input hidden states | ||
attention_mask: Optional attention mask | ||
Returns: | ||
Tuple of output tensor and auxiliary losses dict | ||
""" | ||
batch_size, seq_len, hidden_size = hidden_states.shape | ||
|
||
# Get router logits and probabilities | ||
router_logits = self.router(hidden_states) | ||
router_probs = F.softmax(router_logits, dim=-1) | ||
|
||
# Add router z-loss | ||
z_loss = torch.logsumexp(router_logits, dim=-1).pow(2).mean() | ||
aux_loss = self.config.router_z_loss_coef * z_loss | ||
|
||
# Get top-k routing weights | ||
k = 2 if self.config.router_type == "top_2" else 1 | ||
top_k = torch.topk(router_probs, k=k, dim=-1) | ||
routing_weights = top_k.values | ||
routing_indices = top_k.indices | ||
|
||
# Normalize routing weights | ||
routing_weights = routing_weights / routing_weights.sum(dim=-1, keepdim=True) | ||
|
||
# Dispatch to experts | ||
final_output = torch.zeros_like(hidden_states) | ||
for i in range(k): | ||
expert_index = routing_indices[..., i] | ||
expert_mask = F.one_hot(expert_index, num_classes=self.num_experts) | ||
for j, expert in enumerate(self.experts): | ||
expert_mask_j = expert_mask[..., j].unsqueeze(-1) | ||
expert_input = hidden_states * expert_mask_j | ||
expert_output = expert(expert_input) | ||
final_output += expert_output * routing_weights[..., i].unsqueeze(-1) | ||
|
||
aux_losses = {"router_z_loss": aux_loss} | ||
return final_output, aux_losses |