Skip to content

Commit

Permalink
Have one score definition for cosinesimilarity
Browse files Browse the repository at this point in the history
Currently we have different score calculation for cosine similarity,
for ex: script score, approximate search, exact search has diffent formula
to convert distance to cosine similarity that is aligned with OpenSearch
score. To keep it consistent, we will be using one defintion which is used
by Lucene as standard definition for cosine similarity for all search types.

Signed-off-by: Vijayan Balasubramanian <[email protected]>
  • Loading branch information
VijayanB committed Dec 30, 2024
1 parent c728f02 commit 6597eb1
Show file tree
Hide file tree
Showing 5 changed files with 84 additions and 3 deletions.
1 change: 1 addition & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,7 @@ The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
- Introduced a writing layer in native engines where relies on the writing interface to process IO. (#2241)[https://github.com/opensearch-project/k-NN/pull/2241]
- Allow method parameter override for training based indices (#2290) https://github.com/opensearch-project/k-NN/pull/2290]
- Optimizes lucene query execution to prevent unnecessary rewrites (#2305)[https://github.com/opensearch-project/k-NN/pull/2305]
- Use one formula to calculate cosine similarity (#2357)[https://github.com/opensearch-project/k-NN/pull/2357]
### Bug Fixes
* Fixing the bug when a segment has no vector field present for disk based vector search (#2282)[https://github.com/opensearch-project/k-NN/pull/2282]
* Allow validation for non knn index only after 2.17.0 (#2315)[https://github.com/opensearch-project/k-NN/pull/2315]
Expand Down
14 changes: 13 additions & 1 deletion src/main/java/org/opensearch/knn/index/SpaceType.java
Original file line number Diff line number Diff line change
Expand Up @@ -60,9 +60,21 @@ public float scoreToDistanceTranslation(float score) {
}
},
COSINESIMIL("cosinesimil") {
/**
* Cosine similarity has range of [-1, 1] where -1 represents vectors are at diametrically opposite, and 1 is where
* they are identical in direction and perfectly similar. In Lucene, scores have to be in the range of [0, Float.MAX_VALUE].
* Hence, to move the range from [-1, 1] to [ 0, Float.MAX_VALUE], we convert using following formula which is adopted
* by Lucene as mentioned here
* https://github.com/apache/lucene/blob/0494c824e0ac8049b757582f60d085932a890800/lucene/core/src/java/org/apache/lucene/index/VectorSimilarityFunction.java#L73
* We expect raw score = 1 - cosine(x,y), if underlying library returns different range or other than expected raw score,
* they should override this method to either provide valid range or convert raw score to the format as 1 - cosine and call this method
*
* @param rawScore score returned from underlying library
* @return Lucene scaled score
*/
@Override
public float scoreTranslation(float rawScore) {
return 1 / (1 + rawScore);
return Math.max((2.0F - rawScore) / 2.0F, 0.0F);
}

@Override
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -144,7 +144,12 @@ public CosineSimilarity(Object query, MappedFieldType fieldType) {
protected BiFunction<float[], float[], Float> getScoringMethod(final float[] processedQuery) {
SpaceType.COSINESIMIL.validateVector(processedQuery);
float qVectorSquaredMagnitude = getVectorMagnitudeSquared(processedQuery);
return (float[] q, float[] v) -> 1 + KNNScoringUtil.cosinesimilOptimized(q, v, qVectorSquaredMagnitude);
// To be consistent, we will be using same formula used by lucene as mentioned below
// https://github.com/apache/lucene/blob/0494c824e0ac8049b757582f60d085932a890800/lucene/core/src/java/org/apache/lucene/index/VectorSimilarityFunction.java#L73
return (float[] q, float[] v) -> Math.max(
(1.0F + KNNScoringUtil.cosinesimilOptimized(q, v, qVectorSquaredMagnitude)) / 2.0F,
0.0F
);
}
}

Expand Down
58 changes: 58 additions & 0 deletions src/test/java/org/opensearch/knn/index/NmslibIT.java
Original file line number Diff line number Diff line change
Expand Up @@ -195,6 +195,64 @@ public void testEndToEnd() throws Exception {
fail("Graphs are not getting evicted");
}

public void testEndToEnd_withApproxAndExactSearch_inSameIndex_ForCosineSpaceType() throws Exception {
String indexName = "test-index-1";
String fieldName = "test-field-1";
SpaceType spaceType = SpaceType.COSINESIMIL;
Integer dimension = testData.indexData.vectors[0].length;

// Create an index
XContentBuilder builder = XContentFactory.jsonBuilder()
.startObject()
.startObject("properties")
.startObject(fieldName)
.field("type", "knn_vector")
.field("dimension", dimension)
.field(KNNConstants.METHOD_PARAMETER_SPACE_TYPE, spaceType.getValue())
.startObject(KNNConstants.KNN_METHOD)
.field(KNNConstants.NAME, KNNConstants.METHOD_HNSW)
.field(KNNConstants.KNN_ENGINE, KNNEngine.NMSLIB.getName())
.endObject()
.endObject()
.endObject()
.endObject();

Map<String, Object> mappingMap = xContentBuilderToMap(builder);
String mapping = builder.toString();

createKnnIndex(indexName, buildKNNIndexSettings(0), mapping);

// Index one document
addKnnDoc(indexName, randomAlphaOfLength(5), fieldName, Floats.asList(testData.indexData.vectors[0]).toArray());

// Assert we have the right number of documents in the index
refreshAllIndices();
assertEquals(1, getDocCount(indexName));
// update threshold setting to skip building graph
updateIndexSettings(indexName, Settings.builder().put(KNNSettings.INDEX_KNN_ADVANCED_APPROXIMATE_THRESHOLD, -1));
// add duplicate document with different id
addKnnDoc(indexName, randomAlphaOfLength(5), fieldName, Floats.asList(testData.indexData.vectors[0]).toArray());
assertEquals(2, getDocCount(indexName));
final int k = 2;
// search index
Response response = searchKNNIndex(
indexName,
KNNQueryBuilder.builder().fieldName(fieldName).vector(testData.queries[0]).k(k).build(),
k
);
String responseBody = EntityUtils.toString(response.getEntity());
List<KNNResult> knnResults = parseSearchResponse(responseBody, fieldName);
assertEquals(k, knnResults.size());

List<Float> actualScores = parseSearchResponseScore(responseBody, fieldName);

// both document should have identical score
assertEquals(actualScores.get(0), actualScores.get(1), 0.001);

// Delete index
deleteKNNIndex(indexName);
}

@SneakyThrows
private void validateSearch(
final String indexName,
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@
import java.util.Locale;

import lombok.SneakyThrows;
import org.apache.lucene.index.VectorSimilarityFunction;
import org.opensearch.index.mapper.MappedFieldType;
import org.opensearch.knn.KNNTestCase;
import org.opensearch.knn.index.engine.KNNMethodContext;
Expand Down Expand Up @@ -86,7 +87,11 @@ public void testCosineSimilarity_whenValid_thenSucceed() {
getMappingConfigForMethodMapping(knnMethodContext, 3)
);
KNNScoringSpace.CosineSimilarity cosineSimilarity = new KNNScoringSpace.CosineSimilarity(arrayListQueryObject, fieldType);
assertEquals(2F, cosineSimilarity.getScoringMethod().apply(arrayFloat2, arrayFloat), 0.1F);
assertEquals(
VectorSimilarityFunction.COSINE.compare(arrayFloat2, arrayFloat),
cosineSimilarity.getScoringMethod().apply(arrayFloat2, arrayFloat),
0.1F
);

// invalid zero vector
final List<Float> queryZeroVector = List.of(0.0f, 0.0f, 0.0f);
Expand Down

0 comments on commit 6597eb1

Please sign in to comment.