[Project Page
] [arXiv
] [PDF
] [Suppli
] [Slides
] [BibTeX
]
- Utilize a pre-trained Vision-Language model to identify and localize the object of interest using GradCAM.
- Employ a weakly-supervised proposal generator to generate bounding box proposals and select the proposal with the highest overlap with the GradCAM map.
- Crop the image based on the selected proposal and leverage the GradCAM map as a weak prompt to extract a mask using a weakly-supervised segmentation network.
- Using these generated masks, train an instance segmentation model (Mask-RCNN) eliminating the need for human-provided box-level or pixel-level annotations.
UBUNTU="18.04"
CUDA="11.0"
CUDNN="8"
conda create --name pseduo_mask_gen
conda activate pseduo_mask_gen
bash pseduo_mask_gen.sh
- Referring examples/README.md for data preparation
python pseudo_mask_generator.py
- Organize dataset in COCO format
python prepare_coco_dataset.py
- Extract text embedding using CLIP
# pip install git+https://github.com/openai/CLIP.git
python prepare_clip_embedding_for_open_vocab.py
- Check your final pseudo-mask by visualization
python visualize_coco_style_dataset.py
conda create --name maskfree_ovis
conda activate maskfree_ovis
cd $INSTALL_DIR
bash ovis.sh
git clone https://github.com/NVIDIA/apex.git
cd apex
python setup.py install --cuda_ext --cpp_ext
cd ../
cuda_dir="maskrcnn_benchmark/csrc/cuda"
perl -i -pe 's/AT_CHECK/TORCH_CHECK/' $cuda_dir/deform_pool_cuda.cu $cuda_dir/deform_conv_cuda.cu
python setup.py build develop
- Follow steps in datasets/README.md for data preparation
python -m torch.distributed.launch --nproc_per_node=8 tools/train_net.py --distributed \
--config-file configs/pretrain_pseduo_mask.yaml OUTPUT_DIR $OUTPUT_DIR
python -m torch.distributed.launch --nproc_per_node=8 tools/train_net.py --distributed \
--config-file configs/finetune.yaml MODEL.WEIGHT $PATH_TO_PRETRAIN_MODEL OUTPUT_DIR $OUTPUT_DIR
To perform inference using the Mask-Free OVIS checkpoints, follow these steps:
-
Download the checkpoints from the link below: Mask-Free OVIS Checkpoints
-
Run the inference command:
python tools/test_net.py --config-file configs/eval.yaml MODEL.WEIGHT $CHECKPOINT_PATH OUTPUT_DIR $OUTPUT_DIR
Replace $CHECKPOINT_PATH
with the path to the downloaded checkpoint file and $OUTPUT_DIR
with the desired output directory.
If you found Mask-free OVIS useful in your research, please consider starring ⭐ us on GitHub and citing 📚 us in your research!
@inproceedings{vs2023mask,
title={Mask-free OVIS: Open-Vocabulary Instance Segmentation without Manual Mask Annotations},
author={VS, Vibashan and Yu, Ning and Xing, Chen and Qin, Can and Gao, Mingfei and Niebles, Juan Carlos and Patel, Vishal M and Xu, Ran},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={23539--23549},
year={2023}
}