Skip to content

VascoLopes/EPE-NAS

Repository files navigation

This repository contains code the paper, EPE-NAS.

Setup

Datasets

  1. Download the datasets.

1.1 Place the folders in ~path_to_epenas/datasets/

NAS-Bench-201

  1. Download NAS-Bench-201 (smaller version).

2.1 Place the .pth file in ~path_to_epenas/datasets/

We also refer the reader to instructions in the official NAS-Bench-201 README.

Requirements

  1. Install the requirements in a conda environment with conda env create -f environment_epenas.yml.

Reproducing our results

To reproduce our results:

conda activate epe-nas
./reproduce.sh 3 # average accuracy over 3 runs

Each command will finish by calling process_results.py, which will print a table. ./reproduce.sh 3 should print the following table:

Method Search time (s) CIFAR-10 (val) CIFAR-10 (test) CIFAR-100 (val) CIFAR-100 (test) ImageNet16-120 (val) ImageNet16-120 (test)
Ours (N=10) 2.77 89.90 +- 0.21 92.63 +- 0.32 69.78 +- 2.44 70.10 +- 1.71 41.73 +- 3.60 41.92 +- 4.25
Ours (N=100) 20.47 88.74 +- 3.16 91.59 +- 0.87 67.28 +- 3.68 67.19 +- 3.82 38.66 +- 4.75 38.80 +- 5.41
Ours (N=500) 105.84 88.17 +- 1.35 92.27 +- 1.75 69.23 +- 0.62 69.33 +- 0.66 41.93 +- 3.19 42.05 +- 3.09
Ours (N=1000) 206.23 87.87 +- 0.85 91.31 +- 1.69 69.44 +- 0.83 69.58 +- 0.83 41.86 +- 2.33 41.84 +- 2.06

The code is licensed under the MIT licence.

Acknowledgements

This repository makes liberal use of code from the AutoDL library, NAS-Bench-201 and NAS-WOT. We are grateful to the authors for making the implementations publicly available.

Citing us

If you use or build on our work, please consider citing us:

@inproceedings{lopes2021epe,
  title={EPE-NAS: Efficient Performance Estimation Without Training for Neural Architecture Search},
  author={Lopes, Vasco and Alirezazadeh, Saeid and Alexandre, Lu{\'\i}s A},
  booktitle={30th International Conference on Artificial Neural Networks (ICANN 2021)},
  year={2021}
}

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published