This repository contains code the paper, EPE-NAS.
- Download the datasets.
1.1 Place the folders in ~path_to_epenas/datasets/
- Download NAS-Bench-201 (smaller version).
2.1 Place the .pth file in ~path_to_epenas/datasets/
We also refer the reader to instructions in the official NAS-Bench-201 README.
- Install the requirements in a conda environment with
conda env create -f environment_epenas.yml
.
To reproduce our results:
conda activate epe-nas
./reproduce.sh 3 # average accuracy over 3 runs
Each command will finish by calling process_results.py
, which will print a table. ./reproduce.sh 3
should print the following table:
Method | Search time (s) | CIFAR-10 (val) | CIFAR-10 (test) | CIFAR-100 (val) | CIFAR-100 (test) | ImageNet16-120 (val) | ImageNet16-120 (test) |
---|---|---|---|---|---|---|---|
Ours (N=10) | 2.77 | 89.90 +- 0.21 | 92.63 +- 0.32 | 69.78 +- 2.44 | 70.10 +- 1.71 | 41.73 +- 3.60 | 41.92 +- 4.25 |
Ours (N=100) | 20.47 | 88.74 +- 3.16 | 91.59 +- 0.87 | 67.28 +- 3.68 | 67.19 +- 3.82 | 38.66 +- 4.75 | 38.80 +- 5.41 |
Ours (N=500) | 105.84 | 88.17 +- 1.35 | 92.27 +- 1.75 | 69.23 +- 0.62 | 69.33 +- 0.66 | 41.93 +- 3.19 | 42.05 +- 3.09 |
Ours (N=1000) | 206.23 | 87.87 +- 0.85 | 91.31 +- 1.69 | 69.44 +- 0.83 | 69.58 +- 0.83 | 41.86 +- 2.33 | 41.84 +- 2.06 |
The code is licensed under the MIT licence.
This repository makes liberal use of code from the AutoDL library, NAS-Bench-201 and NAS-WOT. We are grateful to the authors for making the implementations publicly available.
If you use or build on our work, please consider citing us:
@inproceedings{lopes2021epe,
title={EPE-NAS: Efficient Performance Estimation Without Training for Neural Architecture Search},
author={Lopes, Vasco and Alirezazadeh, Saeid and Alexandre, Lu{\'\i}s A},
booktitle={30th International Conference on Artificial Neural Networks (ICANN 2021)},
year={2021}
}