-
Notifications
You must be signed in to change notification settings - Fork 415
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
d2ae34f
commit d3a024c
Showing
1,286 changed files
with
389,436 additions
and
0 deletions.
There are no files selected for viewing
115 changes: 115 additions & 0 deletions
115
v1.6/_downloads/02e36c50288f0c1e7f04c9fda54da101/Mean_Pressure_Weighted.ipynb
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,115 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"\n# Mean Pressure Weighted\n\nUse `metpy.calc.mean_pressure_weighted` as well as pint's unit support to perform calculations.\n\nThe code below uses example data from our test suite to calculate the pressure-weighted mean\ntemperature over a depth of 500 hPa.\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"collapsed": false | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"import pandas as pd\n\nfrom metpy.calc import mean_pressure_weighted\nfrom metpy.cbook import get_test_data\nfrom metpy.units import units" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"Upper air data can be obtained using the siphon package, but for this example we will use\nsome of MetPy's sample data.\n\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"collapsed": false | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"# Set column names\ncol_names = ['pressure', 'height', 'temperature', 'dewpoint', 'direction', 'speed']\n\n# Read in test data using col_names\ndf = pd.read_fwf(get_test_data('jan20_sounding.txt', as_file_obj=False),\n skiprows=5, usecols=[0, 1, 2, 3, 6, 7], names=col_names)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"Drop any rows with all NaN values for T, Td, winds\n\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"collapsed": false | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"df = df.dropna(subset=('temperature', 'dewpoint', 'direction', 'speed'),\n how='all').reset_index(drop=True)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"Isolate pressure, temperature, and height and add units\n\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"collapsed": false | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"p = df['pressure'].values * units.hPa\nT = df['temperature'].values * units.degC\nh = df['height'].values * units.meters" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"Calculate the mean pressure weighted temperature over a depth of 500 hPa\n\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"collapsed": false | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"print(mean_pressure_weighted(p, T, height=h, depth=500 * units.hPa))" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.11.7" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 0 | ||
} |
216 changes: 216 additions & 0 deletions
216
v1.6/_downloads/0bc0f944d103bfc8b7b684caf2f22481/Sounding_Calculations.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,216 @@ | ||
# Copyright (c) 2022 MetPy Developers. | ||
# Distributed under the terms of the BSD 3-Clause License. | ||
# SPDX-License-Identifier: BSD-3-Clause | ||
""" | ||
============================= | ||
Sounding Calculation Examples | ||
============================= | ||
Use functions from `metpy.calc` to perform a number of calculations using sounding data. | ||
The code below uses example data to perform many sounding calculations for a severe weather | ||
event on May 22, 2011 from the Norman, OK sounding. | ||
""" | ||
import numpy as np | ||
import pandas as pd | ||
|
||
import metpy.calc as mpcalc | ||
from metpy.cbook import get_test_data | ||
from metpy.units import units | ||
|
||
########################################### | ||
# Effective Shear Algorithm for use in Supercell Composite Calculation | ||
|
||
|
||
def effective_layer(p, t, td, h, height_layer=False): | ||
"""A function that determines the effective inflow layer for a convective sounding. | ||
Uses the default values of Thompason et al. (2004) for CAPE (100 J/kg) and CIN (-250 J/kg). | ||
Input: | ||
- p: sounding pressure with units | ||
- T: sounding temperature with units | ||
- Td: sounding dewpoint temperature with units | ||
- h: sounding heights with units | ||
Returns: | ||
- pbot/hbot, ptop/htop: pressure/height of the bottom level, | ||
pressure/height of the top level | ||
""" | ||
from metpy.calc import cape_cin, parcel_profile | ||
from metpy.units import units | ||
|
||
pbot = None | ||
|
||
for i in range(p.shape[0]): | ||
prof = parcel_profile(p[i:], t[i], td[i]) | ||
sbcape, sbcin = cape_cin(p[i:], t[i:], td[i:], prof) | ||
if sbcape >= 100 * units('J/kg') and sbcin > -250 * units('J/kg'): | ||
pbot = p[i] | ||
hbot = h[i] | ||
bot_idx = i | ||
break | ||
if not pbot: | ||
return None, None | ||
|
||
for i in range(bot_idx + 1, p.shape[0]): | ||
prof = parcel_profile(p[i:], t[i], td[i]) | ||
sbcape, sbcin = cape_cin(p[i:], t[i:], td[i:], prof) | ||
if sbcape < 100 * units('J/kg') or sbcin < -250 * units('J/kg'): | ||
ptop = p[i] | ||
htop = h[i] | ||
break | ||
|
||
if height_layer: | ||
return hbot, htop | ||
else: | ||
return pbot, ptop | ||
|
||
|
||
########################################### | ||
# Upper air data can be obtained using the siphon package, but for this example we will use | ||
# some of MetPy's sample data. | ||
col_names = ['pressure', 'height', 'temperature', 'dewpoint', 'direction', 'speed'] | ||
|
||
df = pd.read_fwf(get_test_data('20110522_OUN_12Z.txt', as_file_obj=False), | ||
skiprows=7, usecols=[0, 1, 2, 3, 6, 7], names=col_names) | ||
|
||
# Drop any rows with all NaN values for T, Td, winds | ||
df = df.dropna(subset=('temperature', 'dewpoint', 'direction', 'speed' | ||
), how='all').reset_index(drop=True) | ||
|
||
########################################### | ||
# Isolate needed variables from our data file and attach units | ||
p = df['pressure'].values * units.hPa | ||
T = df['temperature'].values * units.degC | ||
Td = df['dewpoint'].values * units.degC | ||
wdir = df['direction'].values * units.degree | ||
sped = df['speed'].values * units.knot | ||
height = df['height'].values * units.meter | ||
|
||
########################################### | ||
# Compute needed variables from our data file and attach units | ||
relhum = mpcalc.relative_humidity_from_dewpoint(T, Td) | ||
mixrat = mpcalc.mixing_ratio_from_relative_humidity(p, T, relhum) | ||
|
||
########################################### | ||
# Compute the wind components | ||
u, v = mpcalc.wind_components(sped, wdir) | ||
|
||
########################################### | ||
# Compute common sounding index parameters | ||
ctotals = mpcalc.cross_totals(p, T, Td) | ||
kindex = mpcalc.k_index(p, T, Td) | ||
gdi = mpcalc.galvez_davison_index(p, T, mixrat, p[0]) | ||
showalter = mpcalc.showalter_index(p, T, Td) | ||
total_totals = mpcalc.total_totals_index(p, T, Td) | ||
vert_totals = mpcalc.vertical_totals(p, T) | ||
|
||
########################################### | ||
# Compture the parcel profile for a surface-based parcel | ||
prof = mpcalc.parcel_profile(p, T[0], Td[0]) | ||
|
||
########################################### | ||
# Compute the corresponding LI, CAPE, CIN values for a surface parcel | ||
lift_index = mpcalc.lifted_index(p, T, prof) | ||
cape, cin = mpcalc.cape_cin(p, T, Td, prof) | ||
|
||
########################################### | ||
# Determine the LCL, LFC, and EL for our surface parcel | ||
lclp, lclt = mpcalc.lcl(p[0], T[0], Td[0]) | ||
lfcp, _ = mpcalc.lfc(p, T, Td) | ||
el_pressure, _ = mpcalc.el(p, T, Td, prof) | ||
|
||
########################################### | ||
# Compute the characteristics of a mean layer parcel (50-hPa depth) | ||
ml_t, ml_td = mpcalc.mixed_layer(p, T, Td, depth=50 * units.hPa) | ||
ml_p, _, _ = mpcalc.mixed_parcel(p, T, Td, depth=50 * units.hPa) | ||
mlcape, mlcin = mpcalc.mixed_layer_cape_cin(p, T, prof, depth=50 * units.hPa) | ||
|
||
########################################### | ||
# Compute the characteristics of the most unstable parcel (50-hPa depth) | ||
mu_p, mu_t, mu_td, _ = mpcalc.most_unstable_parcel(p, T, Td, depth=50 * units.hPa) | ||
mucape, mucin = mpcalc.most_unstable_cape_cin(p, T, Td, depth=50 * units.hPa) | ||
|
||
########################################### | ||
# Compute the Bunkers Storm Motion vector and use to calculate the critical angle | ||
(u_storm, v_storm), *_ = mpcalc.bunkers_storm_motion(p, u, v, height) | ||
critical_angle = mpcalc.critical_angle(p, u, v, height, u_storm, v_storm) | ||
|
||
########################################### | ||
# Work on the calculations needed to compute the significant tornado parameter | ||
|
||
# Estimate height of LCL in meters from hydrostatic thickness | ||
new_p = np.append(p[p > lclp], lclp) | ||
new_t = np.append(T[p > lclp], lclt) | ||
lcl_height = mpcalc.thickness_hydrostatic(new_p, new_t) | ||
|
||
# Compute Surface-based CAPE | ||
sbcape, _ = mpcalc.surface_based_cape_cin(p, T, Td) | ||
|
||
# Compute SRH, given a motion vector toward the NE at 9.9 m/s | ||
*_, total_helicity = mpcalc.storm_relative_helicity(height, u, v, depth=1 * units.km, | ||
storm_u=u_storm, storm_v=v_storm) | ||
|
||
# Copmute Bulk Shear components and then magnitude | ||
ubshr, vbshr = mpcalc.bulk_shear(p, u, v, height=height, depth=6 * units.km) | ||
bshear = mpcalc.wind_speed(ubshr, vbshr) | ||
|
||
# Use all computed pieces to calculate the Significant Tornado parameter | ||
sig_tor = mpcalc.significant_tornado(sbcape, lcl_height, | ||
total_helicity, bshear).to_base_units() | ||
|
||
########################################### | ||
# Compute the supercell composite parameter, if possible | ||
|
||
# Determine the top and bottom of the effective layer using our own function | ||
hbot, htop = effective_layer(p, T, Td, height, height_layer=True) | ||
|
||
# Perform the calculation of supercell composite if an effective layer exists | ||
if hbot: | ||
esrh = mpcalc.storm_relative_helicity(height, u, v, depth=htop - hbot, bottom=hbot) | ||
eubshr, evbshr = mpcalc.bulk_shear(p, u, v, height=height, depth=htop - hbot, bottom=hbot) | ||
ebshear = mpcalc.wind_speed(eubshr, evbshr) | ||
|
||
super_comp = mpcalc.supercell_composite(mucape, esrh[0], ebshear) | ||
else: | ||
super_comp = np.nan | ||
|
||
########################################### | ||
# Print Important Sounding Parameters | ||
print('Important Sounding Parameters for KOUN on 22 Mary 2011 12 UTC') | ||
print() | ||
print(f' CAPE: {cape:.2f}') | ||
print(f' CIN: {cin:.2f}') | ||
print(f'LCL Pressure: {lclp:.2f}') | ||
print(f'LFC Pressure: {lfcp:.2f}') | ||
print(f' EL Pressure: {el_pressure:.2f}') | ||
print() | ||
print(f' Lifted Index: {lift_index:.2f}') | ||
print(f' K-Index: {kindex:.2f}') | ||
print(f'Showalter Index: {showalter:.2f}') | ||
print(f' Cross Totals: {ctotals:.2f}') | ||
print(f' Total Totals: {total_totals:.2f}') | ||
print(f'Vertical Totals: {vert_totals:.2f}') | ||
print() | ||
print('Mixed Layer - Lowest 50-hPa') | ||
print(f' ML Temp: {ml_t:.2f}') | ||
print(f' ML Dewp: {ml_td:.2f}') | ||
print(f' ML CAPE: {mlcape:.2f}') | ||
print(f' ML CIN: {mlcin:.2f}') | ||
print() | ||
print('Most Unstable - Lowest 50-hPa') | ||
print(f' MU Temp: {mu_t:.2f}') | ||
print(f' MU Dewp: {mu_td:.2f}') | ||
print(f' MU Pressure: {mu_p:.2f}') | ||
print(f' MU CAPE: {mucape:.2f}') | ||
print(f' MU CIN: {mucin:.2f}') | ||
print() | ||
print('Bunkers Storm Motion Vector') | ||
print(f' u_storm: {u_storm:.2f}') | ||
print(f' v_storm: {v_storm:.2f}') | ||
print(f'Critical Angle: {critical_angle:.2f}') | ||
print() | ||
print(f'Storm Relative Helicity: {total_helicity:.2f}') | ||
print(f'Significant Tornado Parameter: {sig_tor:.2f}') | ||
print(f'Supercell Composite Parameter: {super_comp:.2f}') |
Oops, something went wrong.