Skip to content

[CVPR 2023] Adversarial Robustness via Random Projection Filters

Notifications You must be signed in to change notification settings

UniSerj/Random-Projection-Filters

Repository files navigation

Adversarial Robustness via Random Projection Filters

Environment

  • torch 1.7.1
  • torchvision 0.8.2
  • torchattacks 3.2.6

Training of RPF

  • To train a ResNet18 with RPF on CIFAR-10:
python train.py --network ResNet18 --dataset cifar10 --attack_iters 10 --lr_schedule multistep --epochs 200 --adv_training --rp --rp_block -1 -1 --rp_out_channel 48 --rp_weight_decay 1e-2 --save_dir resnet18_c10_RPF
  • To train a ResNet50 with RPF on ImageNet:
python train_imagenet.py --pretrained --lr 0.02 --lr_schedule cosine --batch_size 1024 --epochs 90 --adv_train --rp --rp_block -1 -1 --rp_out_channel 48 --rp_weight_decay 1e-2 --save_dir resnet50_imagenet_RPF

Evaluation of RPF

  • To evaluate the performance of ResNet18 with RPF on CIFAR-10:
python evaluate.py --dataset cifar10 --network ResNet18 --rp --rp_out_channel 48 --rp_block -1 -1 --save_dir eval_r18_c10 --pretrain [path_to_model]
  • To evaluate the performance of ResNet50 with RPF on ImageNet:
python train_imagenet.py --evaluate --rp --rp_out_channel 48 --save_dir eval_r50_imagenet --eval_model_path [path_to_model]

Pretrained Models

Pretrained models are provided in google-drive.

About

[CVPR 2023] Adversarial Robustness via Random Projection Filters

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages