Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Iterating families of maps over a map #1195

Open
wants to merge 7 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 5 additions & 2 deletions src/elementary-number-theory/finitely-cyclic-maps.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -58,7 +58,10 @@ module _
(f : X → X) (H : is-finitely-cyclic-map f) →
(f ∘ map-inv-is-finitely-cyclic-map f H) ~ id
is-section-map-inv-is-finitely-cyclic-map f H x =
( iterate-succ-ℕ (length-path-is-finitely-cyclic-map H (f x) x) f x) ∙
( reassociate-iterate-succ-ℕ
( length-path-is-finitely-cyclic-map H (f x) x)
( f)
( x)) ∙
( eq-is-finitely-cyclic-map H (f x) x)

is-retraction-map-inv-is-finitely-cyclic-map :
Expand All @@ -70,7 +73,7 @@ module _
( inv (eq-is-finitely-cyclic-map H (f x) x))) ∙
( ( ap
( iterate (length-path-is-finitely-cyclic-map H (f (f x)) (f x)) f)
( iterate-succ-ℕ
( reassociate-iterate-succ-ℕ
( length-path-is-finitely-cyclic-map H (f x) x) f (f x))) ∙
( ( iterate-iterate
( length-path-is-finitely-cyclic-map H (f (f x)) (f x))
Expand Down
1 change: 1 addition & 0 deletions src/foundation.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -241,6 +241,7 @@ open import foundation.iterated-cartesian-product-types public
open import foundation.iterated-dependent-pair-types public
open import foundation.iterated-dependent-product-types public
open import foundation.iterating-automorphisms public
open import foundation.iterating-families-of-maps public
open import foundation.iterating-functions public
open import foundation.iterating-involutions public
open import foundation.kernel-span-diagrams-of-maps public
Expand Down
36 changes: 29 additions & 7 deletions src/foundation/dependent-inverse-sequential-diagrams.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,7 @@ open import elementary-number-theory.natural-numbers

open import foundation.dependent-pair-types
open import foundation.inverse-sequential-diagrams
open import foundation.iterating-families-of-maps
open import foundation.unit-type
open import foundation.universe-levels

Expand Down Expand Up @@ -114,18 +115,18 @@ module _
naturality-section-dependent-inverse-sequential-diagram :
(h :
(n : ℕ) (x : family-inverse-sequential-diagram A n) →
family-dependent-inverse-sequential-diagram B n x)
(n : ℕ) → UU (l1 ⊔ l2)
naturality-section-dependent-inverse-sequential-diagram h n =
family-dependent-inverse-sequential-diagram B n x) →
UU (l1 ⊔ l2)
naturality-section-dependent-inverse-sequential-diagram h =
( n : ℕ) →
h n ∘ map-inverse-sequential-diagram A n ~
map-dependent-inverse-sequential-diagram B n _ ∘ h (succ-ℕ n)

section-dependent-inverse-sequential-diagram : UU (l1 ⊔ l2)
section-dependent-inverse-sequential-diagram =
Σ ( (n : ℕ) (x : family-inverse-sequential-diagram A n) →
family-dependent-inverse-sequential-diagram B n x)
( λ h → (n : ℕ) →
naturality-section-dependent-inverse-sequential-diagram h n)
( naturality-section-dependent-inverse-sequential-diagram)

map-section-dependent-inverse-sequential-diagram :
section-dependent-inverse-sequential-diagram →
Expand All @@ -134,10 +135,9 @@ module _
map-section-dependent-inverse-sequential-diagram = pr1

naturality-map-section-dependent-inverse-sequential-diagram :
(f : section-dependent-inverse-sequential-diagram) (n : ℕ)
(f : section-dependent-inverse-sequential-diagram) →
naturality-section-dependent-inverse-sequential-diagram
( map-section-dependent-inverse-sequential-diagram f)
( n)
naturality-map-section-dependent-inverse-sequential-diagram = pr2
```

Expand All @@ -158,6 +158,17 @@ pr1 (right-shift-dependent-inverse-sequential-diagram B) n =
family-dependent-inverse-sequential-diagram B (succ-ℕ n)
pr2 (right-shift-dependent-inverse-sequential-diagram B) n =
map-dependent-inverse-sequential-diagram B (succ-ℕ n)

iterated-right-shift-dependent-inverse-sequential-diagram :
{l1 l2 : Level} (n : ℕ) →
(A : inverse-sequential-diagram l1) →
dependent-inverse-sequential-diagram l2 A →
dependent-inverse-sequential-diagram l2
( iterated-right-shift-inverse-sequential-diagram n A)
iterated-right-shift-dependent-inverse-sequential-diagram n A =
iterate-family-of-maps n
( λ A → right-shift-dependent-inverse-sequential-diagram {A = A})
( A)
```

### Left shifting a dependent inverse sequential diagram
Expand All @@ -179,6 +190,17 @@ pr2 (left-shift-dependent-inverse-sequential-diagram B) 0 x =
raise-terminal-map (family-dependent-inverse-sequential-diagram B 0 x)
pr2 (left-shift-dependent-inverse-sequential-diagram B) (succ-ℕ n) =
map-dependent-inverse-sequential-diagram B n

iterated-left-shift-dependent-inverse-sequential-diagram :
{l1 l2 : Level} (n : ℕ) →
(A : inverse-sequential-diagram l1) →
dependent-inverse-sequential-diagram l2 A →
dependent-inverse-sequential-diagram l2
( iterated-left-shift-inverse-sequential-diagram n A)
iterated-left-shift-dependent-inverse-sequential-diagram n A =
iterate-family-of-maps n
( λ A → left-shift-dependent-inverse-sequential-diagram {A = A})
( A)
```

## Table of files about sequential limits
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,7 @@ module foundation.equivalences-inverse-sequential-diagrams where
```agda
open import elementary-number-theory.natural-numbers

open import foundation.binary-homotopies
open import foundation.dependent-pair-types
open import foundation.equality-dependent-function-types
open import foundation.fundamental-theorem-of-identity-types
Expand Down Expand Up @@ -56,8 +57,7 @@ equiv-inverse-sequential-diagram A B =
Σ ( (n : ℕ) →
family-inverse-sequential-diagram A n ≃
family-inverse-sequential-diagram B n)
( λ e →
(n : ℕ) → naturality-hom-inverse-sequential-diagram A B (map-equiv ∘ e) n)
( λ e → naturality-hom-inverse-sequential-diagram A B (map-equiv ∘ e))

hom-equiv-inverse-sequential-diagram :
{l1 l2 : Level}
Expand Down Expand Up @@ -94,8 +94,7 @@ is-torsorial-equiv-inverse-sequential-diagram A =
( is-torsorial-Eq-Π
( λ n → is-torsorial-equiv (family-inverse-sequential-diagram A n)))
( family-inverse-sequential-diagram A , λ n → id-equiv)
( is-torsorial-Eq-Π
( λ n → is-torsorial-htpy (map-inverse-sequential-diagram A n)))
( is-torsorial-binary-htpy (map-inverse-sequential-diagram A))

is-equiv-equiv-eq-inverse-sequential-diagram :
{l : Level} (A B : inverse-sequential-diagram l) →
Expand Down
3 changes: 1 addition & 2 deletions src/foundation/inverse-sequential-diagrams.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -79,8 +79,7 @@ pr2 (right-shift-inverse-sequential-diagram A) n =
map-inverse-sequential-diagram A (succ-ℕ n)

iterated-right-shift-inverse-sequential-diagram :
{l : Level} (n : ℕ) →
inverse-sequential-diagram l → inverse-sequential-diagram l
{l : Level} → ℕ → inverse-sequential-diagram l → inverse-sequential-diagram l
iterated-right-shift-inverse-sequential-diagram n =
iterate n right-shift-inverse-sequential-diagram
```
Expand Down
116 changes: 116 additions & 0 deletions src/foundation/iterating-families-of-maps.lagda.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,116 @@
# Iterating families of maps over a map

```agda
module foundation.iterating-families-of-maps where
```

<details><summary>Imports</summary>

```agda
open import elementary-number-theory.addition-natural-numbers
open import elementary-number-theory.exponentiation-natural-numbers
open import elementary-number-theory.multiplication-natural-numbers
open import elementary-number-theory.multiplicative-monoid-of-natural-numbers
open import elementary-number-theory.natural-numbers

open import foundation.action-on-higher-identifications-functions
open import foundation.action-on-identifications-dependent-functions
open import foundation.action-on-identifications-functions
open import foundation.dependent-homotopies
open import foundation.dependent-identifications
open import foundation.dependent-pair-types
open import foundation.function-extensionality
open import foundation.iterating-functions
open import foundation.transport-along-identifications
open import foundation.universe-levels

open import foundation-core.commuting-squares-of-maps
open import foundation-core.endomorphisms
open import foundation-core.homotopies
open import foundation-core.identity-types
open import foundation-core.sets

open import group-theory.monoid-actions
```

</details>

## Idea

Given a family of maps `g : (x : X) → C x → C (f x)` over a map `f : X → X`,
then `g` can be
{{#concept "iterated" Disambiguation="family of maps over a map of types" Agda=iterate-family-of-maps}}
by repeatedly applying `g`.

## Definition

### Iterating dependent functions

```agda
module _
{l1 l2 : Level} {X : UU l1} {C : X → UU l2} {f : X → X}
where

iterate-family-of-maps :
(k : ℕ) → ((x : X) → C x → C (f x)) → (x : X) → C x → C (iterate k f x)
iterate-family-of-maps zero-ℕ g x y = y
iterate-family-of-maps (succ-ℕ k) g x y =
g (iterate k f x) (iterate-family-of-maps k g x y)

iterate-family-of-maps' :
(k : ℕ) → ((x : X) → C x → C (f x)) → (x : X) → C x → C (iterate' k f x)
iterate-family-of-maps' zero-ℕ g x y = y
iterate-family-of-maps' (succ-ℕ k) g x y =
iterate-family-of-maps' k g (f x) (g x y)
```

## Properties

### The two definitions of iterating dependent functions are homotopic

```agda
module _
{l1 l2 : Level} {X : UU l1} {C : X → UU l2} {f : X → X}
where

reassociate-iterate-family-of-maps-succ-ℕ :
(k : ℕ) (g : (x : X) → C x → C (f x)) (x : X) (y : C x) →
dependent-identification C
( reassociate-iterate-succ-ℕ k f x)
( g (iterate k f x) (iterate-family-of-maps k g x y))
( iterate-family-of-maps k g (f x) (g x y))
reassociate-iterate-family-of-maps-succ-ℕ zero-ℕ g x y = refl
reassociate-iterate-family-of-maps-succ-ℕ (succ-ℕ k) g x y =
equational-reasoning
tr C
( reassociate-iterate-succ-ℕ (succ-ℕ k) f x)
( g (iterate (succ-ℕ k) f x) (iterate-family-of-maps (succ-ℕ k) g x y))
g ( iterate k f (f x))
( tr C
( reassociate-iterate-succ-ℕ k f x)
( g (iterate k f x) (iterate-family-of-maps k g x y)))
by
tr-ap f g
( reassociate-iterate-succ-ℕ k f x)
( iterate-family-of-maps (succ-ℕ k) g x y)
= g (iterate k f (f x)) (iterate-family-of-maps k g (f x) (g x y))
by
ap
( g (iterate k f (f x)))
( reassociate-iterate-family-of-maps-succ-ℕ k g x y)

reassociate-iterate-family-of-maps :
(k : ℕ) (g : (x : X) → C x → C (f x)) (x : X) (y : C x) →
dependent-identification C
( reassociate-iterate k f x)
( iterate-family-of-maps k g x y)
( iterate-family-of-maps' k g x y)
reassociate-iterate-family-of-maps zero-ℕ g x y = refl
reassociate-iterate-family-of-maps (succ-ℕ k) g x y =
concat-dependent-identification C
( reassociate-iterate-succ-ℕ k f x)
( reassociate-iterate k f (f x))
( reassociate-iterate-family-of-maps-succ-ℕ k g x y)
( reassociate-iterate-family-of-maps k g (f x) (g x y))
```
16 changes: 9 additions & 7 deletions src/foundation/iterating-functions.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -85,15 +85,16 @@ module _
{l : Level} {X : UU l}
where

iterate-succ-ℕ :
reassociate-iterate-succ-ℕ :
(k : ℕ) (f : X → X) (x : X) → iterate (succ-ℕ k) f x = iterate k f (f x)
iterate-succ-ℕ zero-ℕ f x = refl
iterate-succ-ℕ (succ-ℕ k) f x = ap f (iterate-succ-ℕ k f x)
reassociate-iterate-succ-ℕ zero-ℕ f x = refl
reassociate-iterate-succ-ℕ (succ-ℕ k) f x =
ap f (reassociate-iterate-succ-ℕ k f x)

reassociate-iterate : (k : ℕ) (f : X → X) → iterate k f ~ iterate' k f
reassociate-iterate zero-ℕ f x = refl
reassociate-iterate (succ-ℕ k) f x =
iterate-succ-ℕ k f x ∙ reassociate-iterate k f (f x)
reassociate-iterate-succ-ℕ k f x ∙ reassociate-iterate k f (f x)
```

### For any map `f : X → X`, iterating `f` defines a monoid action of ℕ on `X`
Expand All @@ -108,7 +109,8 @@ module _
iterate (k +ℕ l) f x = iterate k f (iterate l f x)
iterate-add-ℕ k zero-ℕ f x = refl
iterate-add-ℕ k (succ-ℕ l) f x =
ap f (iterate-add-ℕ k l f x) ∙ iterate-succ-ℕ k f (iterate l f x)
ap f (iterate-add-ℕ k l f x) ∙
reassociate-iterate-succ-ℕ k f (iterate l f x)

left-unit-law-iterate-add-ℕ :
(l : ℕ) (f : X → X) (x : X) →
Expand Down Expand Up @@ -140,7 +142,7 @@ module _
iterate-mul-ℕ (succ-ℕ k) l f x =
( iterate-add-ℕ (k *ℕ l) l f x) ∙
( ( iterate-mul-ℕ k l f (iterate l f x)) ∙
( inv (iterate-succ-ℕ k (iterate l f) x)))
( inv (reassociate-iterate-succ-ℕ k (iterate l f) x)))

iterate-exp-ℕ :
(k l : ℕ) (f : X → X) (x : X) →
Expand All @@ -149,7 +151,7 @@ module _
iterate-exp-ℕ (succ-ℕ k) l f x =
( iterate-mul-ℕ (exp-ℕ l k) l f x) ∙
( ( iterate-exp-ℕ k l (iterate l f) x) ∙
( inv (htpy-eq (iterate-succ-ℕ k (iterate l) f) x)))
( inv (htpy-eq (reassociate-iterate-succ-ℕ k (iterate l) f) x)))

module _
{l : Level} (X : Set l)
Expand Down
Loading
Loading