Code for the paper "Generating Hierarchical Explanations on Text Classification via Feature Interaction Detection"
- torchtext == 0.4.0
- gensim == 3.4.0
- pytorch == 1.2.0
- numpy == 1.16.4
Download well-trained models and data.
We provide the example code of HEDGE interpreting the LSTM, CNN and BERT model on the IMDB dataset. We adopt the BERT-base model built by huggingface: https://github.com/huggingface/transformers.
In each folder, run the following command to generate explanations on the test data for a well-trained model.
python hedge_main_model_imdb.py --save /path/to/your/model
We save the start-end word indexes of text spans in a hierarchy (in the order of importance) into the "hedge_interpretation_index.txt" file.
To visualize the hierarchical explanation of a sentence, run
python hedge_main_model_imdb.py --save /path/to/your/model --visualize 1(the index of the sentence)
If you find this repository helpful, please cite our paper:
@inproceedings{chen2020generating,
title={Generating hierarchical explanations on text classification via feature interaction detection},
author={Chen, Hanjie and Zheng, Guangtao and Ji, Yangfeng},
booktitle={ACL},
url={https://arxiv.org/abs/2004.02015},
year={2020}
}