[Project Page] [Paper]
This repository contains the official code for FlexAttention for Efficient High-Resolution Vision-Language Models.
- Jan 2025: Training documentation released.
- July 2024: Open-source codebase and evaluation.
- July 2024: Accepted by ECCV'2024!
conda create -n flexattention python=3.9
conda activate flexattention
pip install -e .
pip install -e ".[train]"
pip install -e ./transformers
You can download our 7B model checkpoint from huggingface and put it into checkpoints
folder.
- Follow this instruction to download the textvqa evaluaton images and annotation, and extract to
datasets/eval/textvqa
. - Run the multi-gpu inference:
torchrun --nproc_per_node 3 scripts/evaluation/eval_textvqa.py --dist --model-path checkpoints/llava-v1.5-7b-flexattn --id llava-v1.5-7b-flexattn
It will generate a file similar to answer_textvqa_llava-v1.5-7b-flexattn_xxx.jsonl
on the folder root.
- Run the evaluation script:
bash scripts/evaluation/get_textvqa_score.sh ANSWER_FILE
- Download the dataset from huggingface.
git lfs install
git clone https://huggingface.co/datasets/craigwu/vstar_bench
- Run the multi-gpu inference:
# Attribute
torchrun --nproc_per_node 3 scripts/evaluation/eval_vbench.py --dist --model-path checkpoints/llava-v1.5-7b-flexattn --id llava-v1.5-7b-flexattn --subset direct_attributes
# Spatial
torchrun --nproc_per_node 3 scripts/evaluation/eval_vbench.py --dist --model-path checkpoints/llava-v1.5-7b-flexattn --id llava-v1.5-7b-flexattn --subset relative_position
-
Download the dataset from here, and extract it to
datasets/eval/
. -
Run the multi-gpu inference:
torchrun --nproc_per_node 3 scripts/evaluation/eval_magnifier.py --dist --model-path checkpoints/llava-v1.5-7b-flexattn --id llava-v1.5-7b-flexattn
First, follow LLaVA's instruction to prepare the image and annotation. The overall folder structure will look like this:
playground
├── llava_v1_5_mix665k
├── llava_v1_5_mix665k.json
├── coco
│ └── train2017
├── gqa
│ └── images
├── ocr_vqa
│ └── images
├── textvqa
│ └── train_images
└── vg
├── VG_100K
└── VG_100K_2
Then, run the data cleaning script to clean the data.
python tools/prepare_data.py
In this script, we perform the following actions:
- Insert a placeholder
<image>
tag for samples containing only text. - Correct any incorrect image file extensions found in the original data.
- Remove samples that use non-existent images.
You can directly download the prepared file here.
Finally, run the training script:
bash scripts/train/llava-v1.5-7b-flexattn.sh
LLaVA: the codebase that our project build on. Thanks for their amazing code and model.
If our work is useful or relevant to your research, please kindly recognize our contributions by citing our paper:
@inproceedings{li2025flexattention,
title={Flexattention for efficient high-resolution vision-language models},
author={Li, Junyan and Chen, Delin and Cai, Tianle and Chen, Peihao and Hong, Yining and Chen, Zhenfang and Shen, Yikang and Gan, Chuang},
booktitle={European Conference on Computer Vision},
pages={286--302},
year={2025},
organization={Springer}
}