Skip to content

Commit

Permalink
[tvmc] command line driver 'compile' (part 2/4) (apache#6302)
Browse files Browse the repository at this point in the history
* [tvmc] command line driver 'compile' (part 2/4)

 * Add 'compile' subcommand into tvmc (tvm.driver.tvmc)
 * Add frontends: Keras, ONNX, TensorFlow, tflite, PyTorch
 * Add tests for the 'compile' subcommand
 * Enable command line driver tests as part of integration tests
 * Skip tests if the cross-compilation toolchain is not installed


Co-authored-by: Marcus Shawcroft <[email protected]>
Co-authored-by: Matthew Barrett <[email protected]>
Co-authored-by: Dmitriy Smirnov <[email protected]>
Co-authored-by: Luke Hutton <[email protected]>
Co-authored-by: Giuseppe Rossini <[email protected]>
Co-authored-by: Matthew Barrett <[email protected]>
Co-authored-by: Elen Kalda <[email protected]>
Co-authored-by: Ramana Radhakrishnan <[email protected]>
Co-authored-by: Jeremy Johnson <[email protected]>
Co-authored-by: Ina Dobreva <[email protected]>

* tvmc: adjust TODOs

* tvmc: fix linting errors

* Address code-review comments

* Adjust pytest fixture to not break when there is no tensorflow

* Fix frontend tests, to cope with different frameworks in different images

* Apply suggestions from code review

Co-authored-by: Cody Yu <[email protected]>

* Fix lint and code-review issues

* Re-format with black.

* tvmc: Move dependencies to extras_requires

Co-authored-by: Marcus Shawcroft <[email protected]>
Co-authored-by: Matthew Barrett <[email protected]>
Co-authored-by: Dmitriy Smirnov <[email protected]>
Co-authored-by: Luke Hutton <[email protected]>
Co-authored-by: Giuseppe Rossini <[email protected]>
Co-authored-by: Elen Kalda <[email protected]>
Co-authored-by: Ramana Radhakrishnan <[email protected]>
Co-authored-by: Jeremy Johnson <[email protected]>
Co-authored-by: Ina Dobreva <[email protected]>
Co-authored-by: Cody Yu <[email protected]>
  • Loading branch information
11 people authored and Tushar Dey committed Oct 15, 2020
1 parent c5b6a2f commit b5ab87a
Show file tree
Hide file tree
Showing 11 changed files with 1,333 additions and 3 deletions.
16 changes: 15 additions & 1 deletion python/setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -166,7 +166,21 @@ def get_package_data_files():
],
extras_require={
"test": ["pillow<7", "matplotlib"],
"extra_feature": ["tornado", "psutil", "xgboost>=1.1.0", "mypy", "orderedset"],
"extra_feature": [
"tornado",
"psutil",
"xgboost>=1.1.0",
"mypy",
"orderedset",
],
"tvmc": [
"tensorflow>=2.1.0",
"tflite>=2.1.0",
"onnx>=1.7.0",
"onnxruntime>=1.0.0",
"torch>=1.4.0",
"torchvision>=0.5.0",
],
},
packages=find_packages(),
package_dir={"tvm": "tvm"},
Expand Down
5 changes: 5 additions & 0 deletions python/tvm/driver/tvmc/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,3 +14,8 @@
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""
TVMC - TVM driver command-line interface
"""

from . import compiler
4 changes: 2 additions & 2 deletions python/tvm/driver/tvmc/__main__.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@
TVMC - TVM driver command-line interface
"""

from .main import main
from tvm.driver import tvmc

if __name__ == "__main__":
main()
tvmc.main.main()
42 changes: 42 additions & 0 deletions python/tvm/driver/tvmc/common.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,49 @@
"""
Common utility functions shared by TVMC modules.
"""
from tvm import relay
from tvm import transform


class TVMCException(Exception):
"""TVMC Exception"""


def convert_graph_layout(mod, desired_layout):
"""Alter the layout of the input graph.
Parameters
----------
mod : tvm.relay.Module
The relay module to convert.
desired_layout : str
The layout to convert to.
Returns
-------
mod : tvm.relay.Module
The converted module.
"""

# Assume for the time being that graphs only have
# conv2d as heavily-sensitive operators.
desired_layouts = {
"nn.conv2d": [desired_layout, "default"],
"qnn.conv2d": [desired_layout, "default"],
}

# Convert the layout of the graph where possible.
seq = transform.Sequential(
[
relay.transform.RemoveUnusedFunctions(),
relay.transform.ConvertLayout(desired_layouts),
]
)

with transform.PassContext(opt_level=3):
try:
return seq(mod)
except Exception as err:
raise TVMCException(
"Error converting layout to {0}: {1}".format(desired_layout, str(err))
)
280 changes: 280 additions & 0 deletions python/tvm/driver/tvmc/compiler.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,280 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""
Provides support to compile networks both AOT and JIT.
"""
import logging
import os.path
import tarfile
from pathlib import Path

import tvm
from tvm import autotvm
from tvm import relay
from tvm.contrib import cc
from tvm.contrib import util

from . import common, frontends
from .main import register_parser


@register_parser
def add_compile_parser(subparsers):
""" Include parser for 'compile' subcommand """

parser = subparsers.add_parser("compile", help="compile a model")
parser.set_defaults(func=drive_compile)
parser.add_argument(
"--cross-compiler",
default="",
help="the cross compiler to generate target libraries, e.g. 'aarch64-linux-gnu-gcc'",
)
parser.add_argument(
"--desired-layout",
choices=["NCHW", "NHWC"],
default=None,
help="change the data layout of the whole graph",
)
parser.add_argument(
"--dump-code",
metavar="FORMAT",
default="",
help="comma separarated list of formats to export, e.g. 'asm,ll,relay' ",
)
parser.add_argument(
"--model-format",
choices=frontends.get_frontend_names(),
help="specify input model format",
)
parser.add_argument(
"-o",
"--output",
default="module.tar",
help="output the compiled module to an archive",
)
parser.add_argument(
"--target",
help="compilation target as plain string, inline JSON or path to a JSON file",
required=True,
)
parser.add_argument(
"--tuning-records",
metavar="PATH",
default="",
help="path to an auto-tuning log file by AutoTVM. If not presented, "
"the fallback/tophub configs will be used",
)
parser.add_argument("-v", "--verbose", action="count", default=0, help="increase verbosity")
# TODO (@leandron) This is a path to a physical file, but
# can be improved in future to add integration with a modelzoo
# or URL, for example.
parser.add_argument("FILE", help="path to the input model file")


def drive_compile(args):
"""Invoke tvmc.compiler module with command line arguments
Parameters
----------
args: argparse.Namespace
Arguments from command line parser.
Returns
--------
int
Zero if successfully completed
"""

graph, lib, params, dumps = compile_model(
args.FILE,
args.target,
args.dump_code,
None,
args.model_format,
args.tuning_records,
args.tensor_layout,
)

if dumps:
save_dumps(args.output, dumps)

save_module(args.output, graph, lib, params, args.cross_compiler)
return 0


def compile_model(
path,
target,
dump_code=None,
target_host=None,
model_format=None,
tuning_records=None,
alter_layout=None,
):
"""Compile a model from a supported framework into a TVM module.
This function takes a union of the arguments of both frontends.load_model
and compiler.compile_relay. The resulting TVM module can be executed using
the graph runtime.
Parameters
----------
path: str
Path to a file
target : str
The target for which to compile. Can be a plain string or
a path.
dump_code : list, optional
Dump the generated code for the specified source types, on
the requested target.
target_host : str, optional
The target of the host machine if host-side code
needs to be generated.
model_format: str, optional
A string representing a name of a frontend to be used
tuning_records: str, optional
Path to the file produced by the tuning to be used during
compilation.
alter_layout: str, optional
The layout to convert the graph to. Note, the convert layout
pass doesn't currently guarantee the whole of the graph will
be converted to the chosen layout.
Returns
-------
graph : str
A JSON-serialized TVM execution graph.
lib : tvm.module.Module
A TVM module containing the compiled functions.
params : dict
The parameters (weights) for the TVM module.
dumps : dict
Dictionary containing the dumps specified.
"""
dump_code = [x.strip() for x in dump_code.split(",")] if dump_code else None
mod, params = frontends.load_model(path, model_format)

if alter_layout:
mod = common.convert_graph_layout(mod, alter_layout)

# Handle the case in which target is a path to a JSON file.
if os.path.exists(target):
with open(target) as target_file:
logging.info("using target input from file: %s", target)
target = "".join(target_file.readlines())

# TODO(@leandron) We don't have an API to collect a list of supported
# targets yet
logging.debug("creating target from input: %s", target)
tvm_target = tvm.target.Target(target)
target_host = target_host or ""

if tuning_records and os.path.exists(tuning_records):
# TODO (@leandron) a new PR will introduce the 'tune' subcommand
# the is used to generate the tuning records file
logging.debug("tuning records file provided: %s", tuning_records)
with autotvm.apply_history_best(tuning_records):
with tvm.transform.PassContext(opt_level=3):
logging.debug("building relay graph with tuning records")
graph_module = relay.build(mod, tvm_target, params=params, target_host=tvm_target)
else:
with tvm.transform.PassContext(opt_level=3):
logging.debug("building relay graph (no tuning records provided)")
graph_module = relay.build(mod, tvm_target, params=params, target_host=tvm_target)

# Generate output dump files with sources
dump_code = dump_code or []
dumps = {}
for source_type in dump_code:
lib = graph_module.get_lib()
# TODO lib.get_source call have inconsistent behavior for unsupported
# formats (@leandron).
source = str(mod) if source_type == "relay" else lib.get_source(source_type)
dumps[source_type] = source

return graph_module.get_json(), graph_module.get_lib(), graph_module.get_params(), dumps


def save_module(module_path, graph, lib, params, cross=None):
"""
Create a tarball containing the generated TVM graph,
exported library and parameters
Parameters
----------
module_path : str
path to the target tar.gz file to be created,
including the file name
graph : str
A JSON-serialized TVM execution graph.
lib : tvm.module.Module
A TVM module containing the compiled functions.
params : dict
The parameters (weights) for the TVM module.
cross : str or callable object, optional
Function that performs the actual compilation
"""
lib_name = "mod.so"
graph_name = "mod.json"
param_name = "mod.params"
temp = util.tempdir()
path_lib = temp.relpath(lib_name)
if not cross:
logging.debug("exporting library to %s", path_lib)
lib.export_library(path_lib)
else:
logging.debug("exporting library to %s , using cross compiler %s", path_lib, cross)
lib.export_library(path_lib, cc.cross_compiler(cross))

with open(temp.relpath(graph_name), "w") as graph_file:
logging.debug("writing graph to file to %s", graph_file.name)
graph_file.write(graph)

with open(temp.relpath(param_name), "wb") as params_file:
logging.debug("writing params to file to %s", params_file.name)
params_file.write(relay.save_param_dict(params))

logging.debug("saving module as tar file to %s", module_path)
with tarfile.open(module_path, "w") as tar:
tar.add(path_lib, lib_name)
tar.add(temp.relpath(graph_name), graph_name)
tar.add(temp.relpath(param_name), param_name)


def save_dumps(module_name, dumps, dump_root="."):
"""
Serialize dump files to the disk.
Parameters
----------
module_name : str
File name, referring to the module that generated
the dump contents
dumps : dict
The output contents to be saved into the files
dump_root : str, optional
Path in which dump files will be created
"""

for dump_format in dumps:
dump_name = module_name + "." + dump_format
with open(Path(dump_root, dump_name), "w") as f:
f.write(dumps[dump_format])
Loading

0 comments on commit b5ab87a

Please sign in to comment.