Skip to content

Commit

Permalink
Implement Keras Conv1D (apache#7035)
Browse files Browse the repository at this point in the history
  • Loading branch information
Matthew Brookhart authored and Tushar Dey committed Jan 20, 2021
1 parent 27686e0 commit 9b19d27
Show file tree
Hide file tree
Showing 2 changed files with 98 additions and 2 deletions.
85 changes: 83 additions & 2 deletions python/tvm/relay/frontend/keras.py
Original file line number Diff line number Diff line change
Expand Up @@ -267,6 +267,81 @@ def _convert_dense(inexpr, keras_layer, etab):
return out


def _convert_convolution1d(inexpr, keras_layer, etab):
_check_data_format(keras_layer)
weightList = keras_layer.get_weights()
weight = weightList[0]

if etab.data_layout == "NWC":
kernel_layout = "WIO"
else:
kernel_layout = "OIW"
msg = (
"Kernel layout with {} is not supported for operator Convolution1D "
"in frontend Keras."
)
raise tvm.error.OpAttributeUnImplemented(msg.format(etab.data_layout))

is_deconv = type(keras_layer).__name__ == "Conv1DTranspose"

if is_deconv:
if kernel_layout == "OIW":
weight = weight.transpose([2, 0, 1])
kernel_w, n_filters, _ = weight.shape
else:
kernel_w, _, n_filters = weight.shape

dilation_rate = keras_layer.dilation_rate
if isinstance(dilation_rate, (list, tuple)):
dilation = [dilation_rate[0]]
else:
dilation = [dilation_rate]

dilated_kernel_w = (kernel_w - 1) * dilation[0] + 1
stride_w = keras_layer.strides[0]
params = {
"weight": etab.new_const(weight),
"kernel_size": [kernel_w],
"strides": [stride_w],
"dilation": dilation,
"padding": [0],
"data_layout": etab.data_layout,
"kernel_layout": kernel_layout,
}
params["channels"] = n_filters

if keras_layer.padding == "valid":
pass
# calculate the padding values
elif keras_layer.padding == "same":
in_w = keras_layer.input_shape[1]
pad_w = _get_pad_pair(in_w, dilated_kernel_w, stride_w)
params["padding"] = [pad_w[0], pad_w[1]]
else:
msg = "Padding with {} is not supported for operator Convolution3D " "in frontend Keras."
raise tvm.error.OpAttributeUnImplemented(msg.format(keras_layer.padding))

if is_deconv:
out = _op.nn.conv1d_transpose(data=inexpr, **params)
else:
out = _op.nn.conv1d(data=inexpr, **params)

channel_axis = -1 if etab.data_layout == "NWC" else 1
if keras_layer.use_bias:
bias = etab.new_const(weightList[1])
out = _op.nn.bias_add(out, bias, channel_axis)

# defuse activation
if sys.version_info.major < 3:
act_type = keras_layer.activation.func_name
else:
act_type = keras_layer.activation.__name__
if act_type != "linear":
out = _convert_activation(out, act_type, etab)

return out


def _convert_convolution(inexpr, keras_layer, etab):
_check_data_format(keras_layer)
is_deconv = type(keras_layer).__name__ == "Conv2DTranspose"
Expand Down Expand Up @@ -968,7 +1043,8 @@ def _default_skip(inexpr, keras_layer, _): # pylint: disable=unused-argument
# 'GlobalMaxPooling1D' : _convert_pooling,
# 'Cropping1D' : _convert_cropping,
# 'UpSampling1D' : _convert_upsample,
# 'Conv1D' : _convert_convolution1d,
"Conv1D": _convert_convolution1d,
# "Conv1DTranspose": _convert_convolution1d,
"Conv3D": _convert_convolution3d,
"Conv3DTranspose": _convert_convolution3d,
# 'SeparableConv3D' : _convert_convolution3d,
Expand Down Expand Up @@ -1102,7 +1178,12 @@ def _convert_input_layer(keras_layer):

etab = ExprTable()
# Set global data format.
assert layout in ["NCHW", "NHWC", "NDHWC"], "Layout must be one of 'NCHW', NHWC or NDHWC"
assert layout in [
"NWC",
"NCHW",
"NHWC",
"NDHWC",
], "Layout must be one of 'NWC', 'NCHW', NHWC or NDHWC"
etab.data_layout = layout
for keras_layer in model.layers:
if isinstance(keras_layer, input_layer_class):
Expand Down
15 changes: 15 additions & 0 deletions tests/python/frontend/keras/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -228,6 +228,21 @@ def test_forward_pool(self, keras):
keras_model = keras.models.Model(data, y)
verify_keras_frontend(keras_model)

def test_forward_conv1d(self, keras):
data = keras.layers.Input(shape=(32, 3))
conv_funcs = [
keras.layers.Conv1D(filters=10, kernel_size=(3,), strides=(2,), padding="same"),
keras.layers.Conv1D(filters=10, kernel_size=(3,), dilation_rate=(2,), padding="same"),
keras.layers.Conv1D(filters=1, kernel_size=(3,), padding="valid", use_bias=False),
keras.layers.Conv1D(filters=10, kernel_size=(2,), padding="valid"),
# Enable when relay conv1dtranspose handles NWC
# keras.layers.Conv1DTranspose(filters=10, kernel_size=(3), padding="valid"),
]
for conv_func in conv_funcs:
x = conv_func(data)
keras_model = keras.models.Model(data, x)
verify_keras_frontend(keras_model, layout="NWC")

def test_forward_conv(self, keras):
data = keras.layers.Input(shape=(32, 32, 3))
conv_funcs = [
Expand Down

0 comments on commit 9b19d27

Please sign in to comment.