forked from opensearch-project/ml-commons
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add openai embedding model blueprint (opensearch-project#1583)
Signed-off-by: Yaliang Wu <[email protected]> Signed-off-by: TrungBui59 <[email protected]>
- Loading branch information
1 parent
f717544
commit 0c7d42c
Showing
3 changed files
with
213 additions
and
24 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
161 changes: 161 additions & 0 deletions
161
docs/remote_inference_blueprints/openai_connector_embedding_blueprint.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,161 @@ | ||
# OpenAI connector blueprint example for embedding model | ||
|
||
## 1. Create connector for OpenAI embedding model: | ||
|
||
Refer to OpenAI [official doc](https://platform.openai.com/docs/guides/embeddings). | ||
|
||
If you are using self-managed Opensearch, you should supply OpenAI API key: | ||
|
||
```json | ||
POST /_plugins/_ml/connectors/_create | ||
{ | ||
"name": "<YOUR CONNECTOR NAME>", | ||
"description": "<YOUR CONNECTOR DESCRIPTION>", | ||
"version": "<YOUR CONNECTOR VERSION>", | ||
"protocol": "http", | ||
"parameters": { | ||
"model": "text-embedding-ada-002" | ||
}, | ||
"credential": { | ||
"openAI_key": "<PLEASE ADD YOUR OPENAI API KEY HERE>" | ||
}, | ||
"actions": [ | ||
{ | ||
"action_type": "predict", | ||
"method": "POST", | ||
"url": "https://api.openai.com/v1/embeddings", | ||
"headers": { | ||
"Authorization": "Bearer ${credential.openAI_key}" | ||
}, | ||
"request_body": "{ \"input\": ${parameters.input}, \"model\": \"${parameters.model}\" }", | ||
"pre_process_function": "connector.pre_process.openai.embedding", | ||
"post_process_function": "connector.post_process.openai.embedding" | ||
} | ||
] | ||
} | ||
``` | ||
|
||
If using the AWS Opensearch Service, you can provide Secret ARN and IAM role arn that allows access to the Secret ARN. | ||
Refer to this [AWS doc](https://docs.aws.amazon.com/opensearch-service/latest/developerguide/ml-external-connector.html) | ||
|
||
```json | ||
POST /_plugins/_ml/connectors/_create | ||
{ | ||
"name": "<YOUR CONNECTOR NAME>", | ||
"description": "<YOUR CONNECTOR DESCRIPTION>", | ||
"version": "<YOUR CONNECTOR VERSION>", | ||
"protocol": "http", | ||
"parameters": { | ||
"model": "text-embedding-ada-002" | ||
}, | ||
"credential": { | ||
"secretArn": "<YOUR SECRET ARN>", | ||
"roleArn": "<YOUR IAM ROLE ARN>" | ||
}, | ||
"actions": [ | ||
{ | ||
"action_type": "predict", | ||
"method": "POST", | ||
"url": "https://api.openai.com/v1/embeddings", | ||
"headers": { | ||
"Authorization": "Bearer ${credential.secretArn.<YOUR OPENAI SECRET KEY IN SECRET MANAGER>}" | ||
}, | ||
"request_body": "{ \"input\": ${parameters.input}, \"model\": \"${parameters.model}\" }", | ||
"pre_process_function": "connector.pre_process.openai.embedding", | ||
"post_process_function": "connector.post_process.openai.embedding" | ||
} | ||
] | ||
} | ||
``` | ||
|
||
Sample response: | ||
```json | ||
{ | ||
"connector_id": "OyB0josB2yd36FqHy3lO" | ||
} | ||
``` | ||
|
||
## 2. Create model group: | ||
|
||
```json | ||
POST /_plugins/_ml/model_groups/_register | ||
{ | ||
"name": "remote_model_group", | ||
"description": "This is an example description" | ||
} | ||
``` | ||
|
||
Sample response: | ||
```json | ||
{ | ||
"model_group_id": "TWR0josByE8GuSOJ629m", | ||
"status": "CREATED" | ||
} | ||
``` | ||
|
||
## 3. Register model to model group & deploy model: | ||
|
||
```json | ||
POST /_plugins/_ml/models/_register | ||
{ | ||
"name": "OpenAI embedding model", | ||
"function_name": "remote", | ||
"model_group_id": "TWR0josByE8GuSOJ629m", | ||
"description": "test model", | ||
"connector_id": "OyB0josB2yd36FqHy3lO" | ||
} | ||
``` | ||
|
||
Sample response: | ||
```json | ||
{ | ||
"task_id": "PCB1josB2yd36FqHAXk9", | ||
"status": "CREATED" | ||
} | ||
``` | ||
Get model id from task | ||
```json | ||
GET /_plugins/_ml/tasks/PCB1josB2yd36FqHAXk9 | ||
``` | ||
Deploy model, in this demo the model id is `PSB1josB2yd36FqHAnl1` | ||
```json | ||
POST /_plugins/_ml/models/PSB1josB2yd36FqHAnl1/_deploy | ||
``` | ||
|
||
## 4. Test model inference | ||
|
||
```json | ||
POST /_plugins/_ml/models/PSB1josB2yd36FqHAnl1/_predict | ||
{ | ||
"parameters": { | ||
"input": [ "What is the meaning of life?" ] | ||
} | ||
} | ||
``` | ||
|
||
Response: | ||
```json | ||
{ | ||
"inference_results": [ | ||
{ | ||
"output": [ | ||
{ | ||
"name": "sentence_embedding", | ||
"data_type": "FLOAT32", | ||
"shape": [ | ||
1536 | ||
], | ||
"data": [ | ||
-0.0043460787, | ||
-0.029653417, | ||
-0.008173223, | ||
... | ||
] | ||
} | ||
], | ||
"status_code": 200 | ||
} | ||
] | ||
} | ||
``` | ||
|