Skip to content

Commit

Permalink
Improve max ball computation and develop analytic center computation (G…
Browse files Browse the repository at this point in the history
…eomScale#310)

* improve the implementation of maximum ellipsoid computation

* minor fix in rounding unit-test

* fix file copyrights

* fix max_ball bug and create new unit test

* fix max_ball bug and create new unit test

* apply termination criterion after transformation in max ellipsoid rounding

* imrpove skinny poly generator's interface

* improve stopping criterion and seed setting

* complete unit tests implementations

* implement Newton method to compute the analytic center

* minor changes

* resolve PR comments

* complete analytic center computation

* resolve conflicts

* minor changes

* minor changes

* minor changes

* improve new unit tests

* resolve PR comments

---------

Co-authored-by: Apostolos Chalkis <[email protected]>
  • Loading branch information
TolisChal and Apostolos Chalkis authored Jun 21, 2024
1 parent ddcf97b commit 723869e
Show file tree
Hide file tree
Showing 6 changed files with 352 additions and 21 deletions.
8 changes: 4 additions & 4 deletions include/convex_bodies/hpolytope.h
Original file line number Diff line number Diff line change
Expand Up @@ -116,13 +116,13 @@ class HPolytope {

if (_inner_ball.second <= NT(0)) {

NT const tol = 0.00000001;
std::tuple<VT, NT, bool> inner_ball = max_inscribed_ball(A, b, 150, tol);
NT const tol = 1e-08;
std::tuple<VT, NT, bool> inner_ball = max_inscribed_ball(A, b, 5000, tol);

// check if the solution is feasible
if (is_in(Point(std::get<0>(inner_ball))) == 0 || std::get<1>(inner_ball) < NT(0) ||
if (is_in(Point(std::get<0>(inner_ball))) == 0 || std::get<1>(inner_ball) < tol/2.0 ||
std::isnan(std::get<1>(inner_ball)) || std::isinf(std::get<1>(inner_ball)) ||
!std::get<2>(inner_ball) || is_inner_point_nan_inf(std::get<0>(inner_ball)))
is_inner_point_nan_inf(std::get<0>(inner_ball)))
{
_inner_ball.second = -1.0;
} else
Expand Down
82 changes: 79 additions & 3 deletions include/generators/h_polytopes_generator.h
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,11 @@
#define H_POLYTOPES_GEN_H

#include <exception>
#include <chrono>
#include <boost/random/normal_distribution.hpp>
#include <boost/random/uniform_real_distribution.hpp>

#include "preprocess/max_inscribed_ellipsoid_rounding.hpp"

#ifndef isnan
using std::isnan;
Expand All @@ -19,17 +23,17 @@
/// @tparam Polytope Type of returned polytope
/// @tparam RNGType RNGType Type
template <class Polytope, class RNGType>
Polytope random_hpoly(unsigned int dim, unsigned int m, double seed = std::numeric_limits<double>::signaling_NaN()) {
Polytope random_hpoly(unsigned int dim, unsigned int m, int seed = std::numeric_limits<int>::signaling_NaN()) {

typedef typename Polytope::MT MT;
typedef typename Polytope::VT VT;
typedef typename Polytope::NT NT;
typedef typename Polytope::PointType Point;

unsigned rng_seed = std::chrono::system_clock::now().time_since_epoch().count();
int rng_seed = std::chrono::system_clock::now().time_since_epoch().count();
RNGType rng(rng_seed);
if (!isnan(seed)) {
unsigned rng_seed = seed;
int rng_seed = seed;
rng.seed(rng_seed);
}

Expand Down Expand Up @@ -58,4 +62,76 @@ Polytope random_hpoly(unsigned int dim, unsigned int m, double seed = std::numer
return Polytope(dim, A, b);
}

/// This function generates a transformation that maps the unit ball to a skinny ellipsoid
/// with given ratio between the lengths of its maximum and minimum axis
template <class MT, class VT, class RNGType, typename NT>
MT get_skinny_transformation(const int d, NT const eig_ratio, int const seed)
{
boost::normal_distribution<> gdist(0, 1);
RNGType rng(seed);

MT W(d, d);
for (int i = 0; i < d; i++) {
for (int j = 0; j < d; j++) {
W(i, j) = gdist(rng);
}
}

Eigen::HouseholderQR<MT> qr(W);
MT Q = qr.householderQ();

VT diag(d);
const NT eig_min = NT(1), eig_max = eig_ratio;
diag(0) = eig_min;
diag(d-1) = eig_max;
boost::random::uniform_real_distribution<NT> udist(NT(0), NT(1));
NT rand;
for (int i = 1; i < d-1; i++) {
rand = udist(rng);
diag(i) = rand * eig_max + (NT(1)-rand) * eig_min;
}
std::sort(diag.begin(), diag.end());
MT cov = Q * diag.asDiagonal() * Q.transpose();

return cov;
}

/// This function generates a skinny random H-polytope of given dimension and number of hyperplanes $m$
/// @tparam Polytope Type of returned polytope
/// @tparam NT Number type
/// @tparam RNGType RNGType Type
template <class Polytope, typename NT, class RNGType>
Polytope skinny_random_hpoly(unsigned int dim, unsigned int m, const bool pre_rounding = false,
const NT eig_ratio = NT(1000.0), int seed = std::numeric_limits<int>::signaling_NaN()) {

typedef typename Polytope::MT MT;
typedef typename Polytope::VT VT;
typedef typename Polytope::PointType Point;

int rng_seed = std::chrono::system_clock::now().time_since_epoch().count();
RNGType rng(rng_seed);
if (!isnan(seed)) {
int rng_seed = seed;
rng.seed(rng_seed);
}

Polytope P = random_hpoly<Polytope, RNGType>(dim, m, seed);

// rounding the polytope before applying the skinny transformation
if (pre_rounding) {
Point x0(dim);
// run only one iteration
max_inscribed_ellipsoid_rounding<MT, VT, NT>(P, x0, 1);
}

MT cov = get_skinny_transformation<MT, VT, RNGType, NT>(dim, eig_ratio, seed);
Eigen::LLT<MT> lltOfA(cov);
MT L = lltOfA.matrixL();
P.linear_transformIt(L.inverse());

return P;
}



#endif
134 changes: 134 additions & 0 deletions include/preprocess/analytic_center_linear_ineq.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,134 @@
// VolEsti (volume computation and sampling library)

// Copyright (c) 2024 Vissarion Fisikopoulos
// Copyright (c) 2024 Apostolos Chalkis
// Copyright (c) 2024 Elias Tsigaridas

// Licensed under GNU LGPL.3, see LICENCE file


#ifndef ANALYTIC_CENTER_H
#define ANALYTIC_CENTER_H

#include <tuple>

#include "max_inscribed_ball.hpp"

template <typename VT, typename NT>
NT get_max_step(VT const& Ad, VT const& b_Ax)
{
const int m = Ad.size();
NT max_element = std::numeric_limits<NT>::lowest(), max_element_temp;
for (int i = 0; i < m; i++) {
max_element_temp = Ad.coeff(i) / b_Ax.coeff(i);
if (max_element_temp > max_element) {
max_element = max_element_temp;
}
}

return NT(1) / max_element;
}

template <typename MT, typename VT, typename NT>
void get_hessian_grad_logbarrier(MT const& A, MT const& A_trans, VT const& b,
VT const& x, VT const& Ax, MT &H, VT &grad, VT &b_Ax)
{
const int m = A.rows();
VT s(m);

b_Ax.noalias() = b - Ax;
NT *s_data = s.data();
for (int i = 0; i < m; i++)
{
*s_data = NT(1) / b_Ax.coeff(i);
s_data++;
}

VT s_sq = s.cwiseProduct(s);
// Gradient of the log-barrier function
grad.noalias() = A_trans * s;
// Hessian of the log-barrier function
H.noalias() = A_trans * s_sq.asDiagonal() * A;
}

/*
This implementation computes the analytic center of a polytope given
as a set of linear inequalities P = {x | Ax <= b}. The analytic center
is the minimizer of the log barrier function i.e., the optimal solution
of the following optimization problem (Convex Optimization, Boyd and Vandenberghe, Section 8.5.3),
\min -\sum \log(b_i - a_i^Tx), where a_i is the i-th row of A.
The function solves the problem by using the Newton method.
Input: (i) Matrix A, vector b such that the polytope P = {x | Ax<=b}
(ii) The number of maximum iterations, max_iters
(iii) Tolerance parameter grad_err_tol to bound the L2-norm of the gradient
(iv) Tolerance parameter rel_pos_err_tol to check the relative progress in each iteration
Output: (i) The analytic center of the polytope
(ii) A boolean variable that declares convergence
*/
template <typename MT, typename VT, typename NT>
std::tuple<VT, bool> analytic_center_linear_ineq(MT const& A, VT const& b,
unsigned int const max_iters = 500,
NT const grad_err_tol = 1e-08,
NT const rel_pos_err_tol = 1e-12)
{
VT x;
bool feasibility_only = true, converged;
// Compute a feasible point
std::tie(x, std::ignore, converged) = max_inscribed_ball(A, b, max_iters, 1e-08, feasibility_only);
VT Ax = A * x;
if (!converged || (Ax.array() > b.array()).any())
{
std::runtime_error("The computation of the analytic center failed.");
}
// Initialization
const int n = A.cols(), m = A.rows();
MT H(n, n), A_trans = A.transpose();
VT grad(n), d(n), Ad(m), b_Ax(m), step_d(n), x_prev;
NT grad_err, rel_pos_err, rel_pos_err_temp, step;
unsigned int iter = 0;
converged = false;
const NT tol_bnd = NT(0.01);

get_hessian_grad_logbarrier<MT, VT, NT>(A, A_trans, b, x, Ax, H, grad, b_Ax);

do {
iter++;
// Compute the direction
d.noalias() = - H.llt().solve(grad);
Ad.noalias() = A * d;
// Compute the step length
step = std::min((NT(1) - tol_bnd) * get_max_step<VT, NT>(Ad, b_Ax), NT(1));
step_d.noalias() = step*d;
x_prev = x;
x += step_d;
Ax.noalias() += step*Ad;

// Compute the max_i\{ |step*d_i| ./ |x_i| \}
rel_pos_err = std::numeric_limits<NT>::lowest();
for (int i = 0; i < n; i++)
{
rel_pos_err_temp = std::abs(step_d.coeff(i) / x_prev.coeff(i));
if (rel_pos_err_temp > rel_pos_err)
{
rel_pos_err = rel_pos_err_temp;
}
}

get_hessian_grad_logbarrier<MT, VT, NT>(A, A_trans, b, x, Ax, H, grad, b_Ax);
grad_err = grad.norm();

if (iter >= max_iters || grad_err <= grad_err_tol || rel_pos_err <= rel_pos_err_tol)
{
converged = true;
break;
}
} while (true);

return std::make_tuple(x, converged);
}

#endif
31 changes: 17 additions & 14 deletions include/preprocess/max_inscribed_ball.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,7 @@
*/

template <typename MT, typename VT, typename NT>
void calcstep(MT const& A, MT const& A_trans, MT const& R, VT &s,
void calcstep(MT const& A, MT const& A_trans, Eigen::LLT<MT> const& lltOfB, VT &s,
VT &y, VT &r1, VT const& r2, NT const& r3, VT &r4,
VT &dx, VT &ds, NT &dt, VT &dy, VT &tmp, VT &rhs)
{
Expand All @@ -41,7 +41,8 @@ void calcstep(MT const& A, MT const& A_trans, MT const& R, VT &s,

rhs.block(0,0,n,1).noalias() = r2 + A_trans * tmp;
rhs(n) = r3 + tmp.sum();
VT dxdt = R.colPivHouseholderQr().solve(R.transpose().colPivHouseholderQr().solve(rhs));

VT dxdt = lltOfB.solve(rhs);

dx = dxdt.block(0,0,n,1);
dt = dxdt(n);
Expand All @@ -57,10 +58,12 @@ void calcstep(MT const& A, MT const& A_trans, MT const& R, VT &s,


template <typename MT, typename VT, typename NT>
std::tuple<VT, NT, bool> max_inscribed_ball(MT const& A, VT const& b, unsigned int maxiter, NT tol)
std::tuple<VT, NT, bool> max_inscribed_ball(MT const& A, VT const& b,
unsigned int maxiter, NT tol,
const bool feasibility_only = false)
{
int m = A.rows(), n = A.cols();
bool converge;
bool converge = false;

NT bnrm = b.norm();
VT o_m = VT::Zero(m), o_n = VT::Zero(n), e_m = VT::Ones(m);
Expand All @@ -81,7 +84,7 @@ std::tuple<VT, NT, bool> max_inscribed_ball(MT const& A, VT const& b, unsigned
NT const tau0 = 0.995, power_num = 5.0 * std::pow(10.0, 15.0);
NT *vec_iter1, *vec_iter2, *vec_iter3, *vec_iter4;

MT B(n + 1, n + 1), AtD(n, m), R(n + 1, n + 1),
MT B(n + 1, n + 1), AtD(n, m),
eEye = std::pow(10.0, -14.0) * MT::Identity(n + 1, n + 1),
A_trans = A.transpose();

Expand All @@ -105,16 +108,17 @@ std::tuple<VT, NT, bool> max_inscribed_ball(MT const& A, VT const& b, unsigned
total_err = std::max(total_err, rgap);

// progress output & check stopping
if (total_err < tol || ( t > 0 && ( (std::abs(t - t_prev) <= tol * t && std::abs(t - t_prev) <= tol * t_prev)
|| (t_prev >= (1.0 - tol) * t && i > 0)
|| (t <= (1.0 - tol) * t_prev && i > 0) ) ) )
if ( (total_err < tol && t > 0) ||
( t > 0 && ( (std::abs(t - t_prev) <= tol * std::min(std::abs(t), std::abs(t_prev)) ||
std::abs(t - t_prev) <= tol) && i > 10) ) ||
(feasibility_only && t > tol/2.0 && i > 0) )
{
//converged
converge = true;
break;
}

if (dt > 1000.0 * bnrm || t > 1000000.0 * bnrm)
if ((dt > 10000.0 * bnrm || t > 10000000.0 * bnrm) && i > 20)
{
//unbounded
converge = false;
Expand All @@ -127,11 +131,11 @@ std::tuple<VT, NT, bool> max_inscribed_ball(MT const& A, VT const& b, unsigned
vec_iter2 = y.data();
for (int j = 0; j < m; ++j) {
*vec_iter1 = std::min(power_num, (*vec_iter2) / (*vec_iter3));
AtD.col(j).noalias() = A_trans.col(j) * (*vec_iter1);
vec_iter1++;
vec_iter3++;
vec_iter2++;
}
AtD.noalias() = A_trans*d.asDiagonal();

AtDe.noalias() = AtD * e_m;
B.block(0, 0, n, n).noalias() = AtD * A;
Expand All @@ -141,11 +145,10 @@ std::tuple<VT, NT, bool> max_inscribed_ball(MT const& A, VT const& b, unsigned
B.noalias() += eEye;

// Cholesky decomposition
Eigen::LLT <MT> lltOfB(B);
R = lltOfB.matrixL().transpose();
Eigen::LLT<MT> lltOfB(B);

// predictor step & length
calcstep(A, A_trans, R, s, y, r1, r2, r3, r4, dx, ds, dt, dy, tmp, rhs);
calcstep(A, A_trans, lltOfB, s, y, r1, r2, r3, r4, dx, ds, dt, dy, tmp, rhs);

alphap = -1.0;
alphad = -1.0;
Expand All @@ -172,7 +175,7 @@ std::tuple<VT, NT, bool> max_inscribed_ball(MT const& A, VT const& b, unsigned

// corrector and combined step & length
mu_ds_dy.noalias() = e_m * mu - ds.cwiseProduct(dy);
calcstep(A, A_trans, R, s, y, o_m, o_n, 0.0, mu_ds_dy, dxc, dsc, dtc, dyc, tmp, rhs);
calcstep(A, A_trans, lltOfB, s, y, o_m, o_n, 0.0, mu_ds_dy, dxc, dsc, dtc, dyc, tmp, rhs);

dx += dxc;
ds += dsc;
Expand Down
11 changes: 11 additions & 0 deletions test/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -297,6 +297,8 @@ add_test(NAME test_round_max_ellipsoid
add_test(NAME test_round_svd
COMMAND new_rounding_test -tc=round_svd)



add_executable (logconcave_sampling_test logconcave_sampling_test.cpp $<TARGET_OBJECTS:test_main>)
add_test(NAME logconcave_sampling_test_hmc
COMMAND logconcave_sampling_test -tc=hmc)
Expand Down Expand Up @@ -348,6 +350,14 @@ add_test(NAME test_new_rdhr_uniform_MT COMMAND matrix_sampling_test -tc=new_rdhr
add_test(NAME test_new_billiard_uniform_MT COMMAND matrix_sampling_test -tc=new_billiard_uniform_MT)
add_test(NAME test_new_accelerated_billiard_uniform_MT COMMAND matrix_sampling_test -tc=new_accelerated_billiard_uniform_MT)

add_executable (test_internal_points test_internal_points.cpp $<TARGET_OBJECTS:test_main>)
add_test(NAME test_max_ball
COMMAND test_internal_points -tc=test_max_ball)
add_test(NAME test_feasibility_point
COMMAND test_internal_points -tc=test_feasibility_point)
add_test(NAME test_analytic_center
COMMAND test_internal_points -tc=test_analytic_center)

set(ADDITIONAL_FLAGS "-march=native -DSIMD_LEN=0 -DTIME_KEEPING")

#set_target_properties(benchmarks_crhmc
Expand Down Expand Up @@ -388,3 +398,4 @@ TARGET_LINK_LIBRARIES(logconcave_sampling_test lp_solve ${IFOPT} ${IFOPT_IPOPT}
TARGET_LINK_LIBRARIES(crhmc_sampling_test lp_solve ${IFOPT} ${IFOPT_IPOPT} ${PTHREAD} ${GMP} ${MPSOLVE} ${FFTW3} ${MKL_LINK} QD_LIB coverage_config)
TARGET_LINK_LIBRARIES(order_polytope lp_solve coverage_config)
TARGET_LINK_LIBRARIES(matrix_sampling_test lp_solve ${MKL_LINK} coverage_config)
TARGET_LINK_LIBRARIES(test_internal_points lp_solve ${MKL_LINK} coverage_config)
Loading

0 comments on commit 723869e

Please sign in to comment.