Skip to content

Commit

Permalink
No-U-Turn Sampler in HMC (GeomScale#216)
Browse files Browse the repository at this point in the history
* initialize nuts sampler class

* implement the burnin of nuts sampler

* add tests and resolve bugs

* implement e0 estimation in burnin of nuts

* optimize leapfrog

* integrate nuts into the R interface

* document random walk in sample_points.cpp in R interface

* fix burnin for the non-truncated case

* resolve bugs in hmc and nuts pipelines

* improve the preprocess in burin step of nuts

* split large lines in sample_points.cpp

* Add NUTS C++ example and update CMake (#29)

* resolve PR comments

* fix minor bug

* fix compiler bug

* fix error in building the C++ examples

* resolve warnings in sample_points

* fix lpsolve cran warning

* fix cran warning on mac

* improve lpsolve cmake for cran check

* fix R warning in mac test

* remove lpsolve header

* resolve PR comments

---------

Co-authored-by: Marios Papachristou <[email protected]>
Co-authored-by: Apostolos Chalkis <[email protected]>
  • Loading branch information
3 people authored Oct 17, 2023
1 parent 157955c commit 074a562
Show file tree
Hide file tree
Showing 17 changed files with 732 additions and 78 deletions.
5 changes: 0 additions & 5 deletions R-proj/R/RcppExports.R
Original file line number Diff line number Diff line change
Expand Up @@ -361,11 +361,6 @@ sample_points <- function(P, n, random_walk = NULL, distribution = NULL, seed =
.Call(`_volesti_sample_points`, P, n, random_walk, distribution, seed)
}

#' @export
sample_spectra <- function(file = NULL, N = NULL, walk_length = NULL) {
.Call(`_volesti_sample_spectra`, file, N, walk_length)
}

#' Write a SDPA format file
#'
#' Outputs a spectrahedron (the matrices defining a linear matrix inequality) and a vector (the objective function)
Expand Down
55 changes: 55 additions & 0 deletions R-proj/examples/logconcave/nuts_rand_poly.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,55 @@
# VolEsti (volume computation and sampling library)

# Copyright (c) 2012-2020 Vissarion Fisikopoulos
# Copyright (c) 2018-2020 Apostolos Chalkis
# Copyright (c) 2020-2020 Marios Papachristou

# Contributed and/or modified by Marios Papachristou, as part of Google Summer of Code 2020 program.

# Licensed under GNU LGPL.3, see LICENCE file

# Example script for using the logconcave sampling methods

# Import required libraries
library(ggplot2)
library(volesti)

# Sampling from logconcave density example

# Helper function
norm_vec <- function(x) sqrt(sum(x^2))

# Negative log-probability oracle
f <- function(x) (norm_vec(x)^2 + sum(x))

# Negative log-probability gradient oracle
grad_f <- function(x) (2 * x + 1)

dimension <- 50
facets <- 200

# Create domain of truncation
H <- gen_rand_hpoly(dimension, facets, seed = 15)

# Rounding
Tr <- rounding(H, seed = 127)

P <- Hpolytope$new(A = Tr$Mat[1:nrow(Tr$Mat), 2:ncol(Tr$Mat)], b = Tr$Mat[,1])

x_min = matrix(0, dimension, 1)

# Warm start point from truncated Gaussian
warm_start <- sample_points(P, n = 1, random_walk = list("nburns" = 5000), distribution = list("density" = "gaussian", "variance" = 1/2, "mode" = x_min))

# Sample points
n_samples <- 20000

samples <- sample_points(P, n = n_samples, random_walk = list("walk" = "NUTS", "solver" = "leapfrog", "starting_point" = warm_start[,1]),
distribution = list("density" = "logconcave", "negative_logprob" = f, "negative_logprob_gradient" = grad_f))

# Plot histogram
hist(samples[1,], probability=TRUE, breaks = 100)

psrfs <- psrf_univariate(samples)
n_ess <- ess(samples)

4 changes: 2 additions & 2 deletions R-proj/examples/logconcave/simple_hmc_rand_poly.R
Original file line number Diff line number Diff line change
Expand Up @@ -29,10 +29,10 @@ dimension <- 50
facets <- 200

# Create domain of truncation
H <- gen_rand_hpoly(dimension, facets)
H <- gen_rand_hpoly(dimension, facets, seed = 15)

# Rounding
Tr <- rounding(H)
Tr <- rounding(H, seed = 127)

P <- Hpolytope$new(A = Tr$Mat[1:nrow(Tr$Mat), 2:ncol(Tr$Mat)], b = Tr$Mat[,1])

Expand Down
18 changes: 11 additions & 7 deletions R-proj/man/sample_points.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

54 changes: 48 additions & 6 deletions R-proj/src/sample_points.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,7 @@ enum random_walks {
brdhr,
bcdhr,
hmc,
nuts,
gaussian_hmc,
exponential_hmc,
uld
Expand Down Expand Up @@ -213,6 +214,26 @@ void sample_from_polytope(Polytope &P, int type, RNGType &rng, PointList &randPo
}

break;
case nuts:

logconcave_sampling <
PointList,
Polytope,
RNGType,
NutsHamiltonianMonteCarloWalk,
NT,
Point,
NegativeGradientFunctor,
NegativeLogprobFunctor,
LeapfrogODESolver <
Point,
NT,
Polytope,
NegativeGradientFunctor
>
>(randPoints, P, rng, walkL, numpoints, StartingPoint, nburns, *F, *f);

break;
case uld:

logconcave_sampling <
Expand Down Expand Up @@ -244,7 +265,16 @@ void sample_from_polytope(Polytope &P, int type, RNGType &rng, PointList &randPo
//' @param n The number of points that the function is going to sample from the convex polytope.
//' @param random_walk Optional. A list that declares the random walk and some related parameters as follows:
//' \itemize{
//' \item{\code{walk} }{ A string to declare the random walk: i) \code{'CDHR'} for Coordinate Directions Hit-and-Run, ii) \code{'RDHR'} for Random Directions Hit-and-Run, iii) \code{'BaW'} for Ball Walk, iv) \code{'BiW'} for Billiard walk, v) \code{'dikin'} for dikin walk, vi) \code{'vaidya'} for vaidya walk, vii) \code{'john'} for john walk, viii) \code{'BCDHR'} boundary sampling by keeping the extreme points of CDHR or ix) \code{'BRDHR'} boundary sampling by keeping the extreme points of RDHR x) \code{'HMC'} for Hamiltonian Monte Carlo (logconcave densities) xi) \code{'ULD'} for Underdamped Langevin Dynamics using the Randomized Midpoint Method xii) \code{'ExactHMC'} for exact Hamiltonian Monte Carlo with reflections (spherical Gaussian or exponential distribution). The default walk is \code{'aBiW'} for the uniform distribution or \code{'CDHR'} for the Gaussian distribution and H-polytopes and \code{'BiW'} or \code{'RDHR'} for the same distributions and V-polytopes and zonotopes.}
//' \item{\code{walk} }{ A string to declare the random walk: i) \code{'CDHR'} for Coordinate Directions Hit-and-Run,
//' ii) \code{'RDHR'} for Random Directions Hit-and-Run, iii) \code{'BaW'} for Ball Walk,
//' iv) \code{'BiW'} for Billiard walk, v) \code{'dikin'} for dikin walk, vi) \code{'vaidya'} for vaidya walk,
//' vii) \code{'john'} for john walk, viii) \code{'BCDHR'} boundary sampling by keeping the extreme points of CDHR or
//' ix) \code{'BRDHR'} boundary sampling by keeping the extreme points of RDHR x) \code{'NUTS'} for
//' NUTS Hamiltonian Monte Carlo sampler (logconcave densities) xi) \code{'HMC'} for Hamiltonian Monte Carlo (logconcave densities)
//' xii) \code{'ULD'} for Underdamped Langevin Dynamics using the Randomized Midpoint Method (logconcave densities)
//' xiii) \code{'ExactHMC'} for exact Hamiltonian Monte Carlo with reflections (spherical Gaussian or exponential distribution).
//' The default walk is \code{'aBiW'} for the uniform distribution, \code{'CDHR'} for the Gaussian distribution and H-polytopes
//' and \code{'BiW'} or \code{'RDHR'} for the same distributions and V-polytopes and zonotopes. \code{'NUTS'} is the default sampler for logconcave densities.}
//' \item{\code{walk_length} }{ The number of the steps per generated point for the random walk. The default value is \eqn{1}.}
//' \item{\code{nburns} }{ The number of points to burn before start sampling. The default value is \eqn{1}.}
//' \item{\code{starting_point} }{ A \eqn{d}-dimensional numerical vector that declares a starting point in the interior of the polytope for the random walk. The default choice is the center of the ball as that one computed by the function \code{inner_ball()}.}
Expand Down Expand Up @@ -410,18 +440,24 @@ Rcpp::NumericMatrix sample_points(Rcpp::Nullable<Rcpp::Reference> P,
Rcpp::Function negative_logprob = Rcpp::as<Rcpp::List>(distribution)["negative_logprob"];
Rcpp::Function negative_logprob_gradient = Rcpp::as<Rcpp::List>(distribution)["negative_logprob_gradient"];

NT L_, m;
NT L_ = 1, m = 1;

if (Rcpp::as<Rcpp::List>(distribution).containsElementNamed("L_")) {
L_ = Rcpp::as<NT>(Rcpp::as<Rcpp::List>(distribution)["L_"]);
if (L_ <= NT(0)) {
throw Rcpp::exception("The smoothness constant must be positive");
}
} else {
throw Rcpp::exception("The smoothness constant is absent");
L_ = -1;
}

if (Rcpp::as<Rcpp::List>(distribution).containsElementNamed("m")) {
m = Rcpp::as<NT>(Rcpp::as<Rcpp::List>(distribution)["m"]);
if (m <= NT(0)) {
throw Rcpp::exception("The strong-convexity constant must be positive");
}
} else {
throw Rcpp::exception("The strong-convexity constant is absent");
m = -1;
}

if (Rcpp::as<Rcpp::List>(random_walk).containsElementNamed("step_size")) {
Expand All @@ -443,7 +479,6 @@ Rcpp::NumericMatrix sample_points(Rcpp::Nullable<Rcpp::Reference> P,
throw Rcpp::exception("Invalid ODE solver specified. Aborting.");
}
} else {
Rcpp::warning("Solver set to leapfrog.");
solver = leapfrog;
}

Expand Down Expand Up @@ -495,6 +530,8 @@ Rcpp::NumericMatrix sample_points(Rcpp::Nullable<Rcpp::Reference> P,
throw Rcpp::exception("Exponential sampling is supported only for H-polytopes");
}
walk = exponential_hmc;
} else if (logconcave) {
walk = nuts;
} else if (gaussian) {
if (type == 1) {
walk = cdhr;
Expand Down Expand Up @@ -571,7 +608,12 @@ Rcpp::NumericMatrix sample_points(Rcpp::Nullable<Rcpp::Reference> P,
}
} else if (Rcpp::as<std::string>(Rcpp::as<Rcpp::List>(random_walk)["walk"]).compare(std::string("HMC")) == 0) {
if (!logconcave) throw Rcpp::exception("HMC is not supported for non first-order sampling");
if (F->params.L < 0) throw Rcpp::exception("The smoothness constant is absent");
if (F->params.m < 0) throw Rcpp::exception("The strong-convexity constant is absent");
walk = hmc;
} else if (Rcpp::as<std::string>(Rcpp::as<Rcpp::List>(random_walk)["walk"]).compare(std::string("NUTS")) == 0) {
if (!logconcave) throw Rcpp::exception("NUTS is not supported for non first-order sampling");
walk = nuts;
} else if (Rcpp::as<std::string>(Rcpp::as<Rcpp::List>(random_walk)["walk"]).compare(std::string("ULD")) == 0) {
if (!logconcave) throw Rcpp::exception("ULD is not supported for non first-order sampling");
walk = uld;
Expand Down Expand Up @@ -703,7 +745,7 @@ Rcpp::NumericMatrix sample_points(Rcpp::Nullable<Rcpp::Reference> P,
if (numpoints % 2 == 1 && (walk == brdhr || walk == bcdhr)) numpoints--;
MT RetMat(dim, numpoints);
unsigned int jj = 0;

for (typename std::list<Point>::iterator rpit = randPoints.begin(); rpit!=randPoints.end(); rpit++, jj++) {
if (gaussian) {
RetMat.col(jj) = (*rpit).getCoefficients() + mode.getCoefficients();
Expand Down
18 changes: 13 additions & 5 deletions examples/logconcave/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@ endif(COMMAND cmake_policy)

option(DISABLE_NLP_ORACLES "Disable non-linear oracles (used in collocation)" ON)
option(BUILTIN_EIGEN "Use eigen from ../external" OFF)
option(USE_MKL "Use MKL library to build eigen" ON)
option(USE_MKL "Use MKL library to build eigen" OFF)

if(DISABLE_NLP_ORACLES)
add_definitions(-DDISABLE_NLP_ORACLES)
Expand Down Expand Up @@ -73,16 +73,24 @@ else ()
include_directories(BEFORE /usr/include/eigen3)
endif(BUILTIN_EIGEN)

find_library(BLAS NAMES libblas.so libblas.dylib PATHS /usr/local/Cellar/lapack/3.9.1_1/lib /usr/lib/x86_64-linux-gnu /usr/lib/i386-linux-gnu /usr/local/Cellar/openblas/0.3.15_1/lib /usr/lib)

if (USE_MKL)
find_library(BLAS NAME libblas.so PATHS /usr/lib/x86_64-linux-gnu /usr/lib/i386-linux-gnu)
find_library(BLAS NAMES libblas.so libblas.dylib PATHS /usr/local/Cellar/lapack/3.9.1_1/lib /usr/lib/x86_64-linux-gnu /usr/lib/i386-linux-gnu /usr/local/Cellar/openblas/0.3.15_1/lib /usr/lib)
find_library(GFORTRAN NAME libgfortran.dylib PATHS /usr/local/Cellar/gcc/10.2.0_4/lib/gcc/10)
find_library(LAPACK NAME liblapack.dylib PATHS /usr/lib)
find_library(OPENMP NAME libiomp5.dylib PATHS /opt/intel/oneapi/compiler/2021.1.1/mac/compiler/lib)

include_directories (BEFORE ${MKLROOT}/include)
set(PROJECT_LIBS ${BLAS_LIBRARIES})
set(PROJECT_LIBS ${BLAS_LIBRARIES} ${LAPACK_LIBRARIES} ${GFORTRAN_LIBRARIES})
set(MKL_LINK "-L${MKLROOT}/lib -Wl,-rpath,${MKLROOT}/lib -lmkl_intel_ilp64 -lmkl_sequential -lmkl_core -lpthread -lm -ldl")
add_definitions(-DEIGEN_USE_MKL_ALL)
else()
set(MKL_LINK "")
endif(USE_MKL)

# Find lpsolve library
find_library(LP_SOLVE NAMES liblpsolve55.so PATHS /usr/lib/lp_solve)
find_library(LP_SOLVE NAMES liblpsolve55.so liblpsolve55.dylib PATHS /usr/lib/lp_solve /usr/local/lib)

if (NOT LP_SOLVE)
message(FATAL_ERROR "This program requires the lp_solve library, and will not be compiled.")
Expand Down Expand Up @@ -145,6 +153,6 @@ else ()
TARGET_LINK_LIBRARIES(simple_hmc ${LP_SOLVE} ${BLAS} ${MKL_LINK} )
TARGET_LINK_LIBRARIES(exponential_exact_hmc ${LP_SOLVE} ${BLAS} ${MKL_LINK} )
TARGET_LINK_LIBRARIES(gaussian_exact_hmc ${LP_SOLVE} ${BLAS} ${MKL_LINK} )


endif()
2 changes: 1 addition & 1 deletion external/cmake-files/LPSolve.cmake
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,7 @@ function(GetLPSolve)
message(STATUS "lp_solve library found: ${LP_SOLVE_DIR}")

endif()

include_directories(${LP_SOLVE_DIR})

endfunction()
1 change: 1 addition & 0 deletions include/cartesian_geom/point.h
Original file line number Diff line number Diff line change
Expand Up @@ -81,6 +81,7 @@ class point
void set_dimension(const unsigned int dim)
{
d = dim;
coeffs.setZero(d);
}

void set_coord(const unsigned int i, FT coord)
Expand Down
39 changes: 26 additions & 13 deletions include/ode_solvers/leapfrog.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -56,6 +56,8 @@ struct LeapfrogODESolver {
pts xs;
pts xs_prev;

Point grad_x;

MT _AA;

std::pair<NT, int> pbpair;
Expand All @@ -69,11 +71,11 @@ struct LeapfrogODESolver {
eta(step), eta0(step), t(initial_time), F(oracle), Ks(boundaries), xs(initial_state), adaptive(adaptive_) {
dim = xs[0].dimension();
_update_parameters = update_parameters();
grad_x.set_dimension(dim);
initialize();
};



void initialize() {
for (unsigned int i = 0; i < xs.size(); i++) {
VT ar, av;
Expand All @@ -88,7 +90,6 @@ struct LeapfrogODESolver {
Av.push_back(av);
lambda_prev.push_back(NT(0));
}
//step();
}

void disable_adaptive() {
Expand All @@ -101,27 +102,28 @@ struct LeapfrogODESolver {

void step(int k, bool accepted) {
num_steps++;

if (adaptive) eta = (eta0 * num_steps) / (num_steps + num_reflections);

xs_prev = xs;
unsigned int x_index, v_index, it;
t += eta;
Point y;
for (unsigned int i = 1; i < xs.size(); i += 2) {
//pbpair.second = -1;

x_index = i - 1;
v_index = i;

// v' <- v + eta / 2 F(x)
Point z = F(v_index, xs_prev, t);
z = (eta / 2) * z;
xs[v_index] = xs[v_index] + z;
if (k == 0 && !accepted) {
grad_x = F(v_index, xs_prev, t);
}
xs[v_index] += (eta / 2) * grad_x;

// x <- x + eta v'
Point y = xs[v_index];
y = xs[v_index];

if (Ks[x_index] == NULL) {
xs[x_index] = xs_prev[x_index] + eta*y;
xs[x_index] += eta*y;
}
else {
// Find intersection (assuming a line trajectory) between x and y
Expand Down Expand Up @@ -173,10 +175,8 @@ struct LeapfrogODESolver {
}

// tilde v <- v + eta / 2 F(tilde x)
z = F(v_index, xs, t);
z = (eta / 2) * z;
xs[v_index] = xs[v_index] + z;

grad_x = F(v_index, xs, t);
xs[v_index] += (eta / 2) * grad_x;
}

}
Expand All @@ -202,6 +202,19 @@ struct LeapfrogODESolver {
xs[index] = p;
}

NT get_eta() {
return eta;
}

void set_eta(NT &eta_) {
eta = eta_;
eta0 = eta_;
}

bounds get_bounds() {
return Ks;
}

};


Expand Down
Loading

0 comments on commit 074a562

Please sign in to comment.