Skip to content
This repository has been archived by the owner on Mar 7, 2024. It is now read-only.

TileDB-Inc/TileDB-Trino

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

This repository is currently archived, please get in touch via [email protected] or the TileDB Forum if you have a use-case to discuss.

TileDB Trino Connector

TileDB-Trino CI

TileDB is an efficient library for managing large-scale, multi-dimensional dense and sparse array data introducing a novel array format. For more information about TileDB see the official TileDB documentation

This connector allows running SQL on TileDB arrays via Trino. The TileDB-Trino interface supports column subselection on attributes and predicate pushdown on dimension fields, leading to superb performance for projection and range queries.

Docker

A quickstart Docker image is available. The docker image will start a single-node Trino cluster and open the CLI Trino interface where SQL can be run. The Docker image includes two example tiledb arrays /opt/tiledb_example_arrays/dense_global and /opt/tiledb_example_arrays/sparse_global. Simply build and run:

docker build -t tiledb-trino . 

docker run -it --rm tiledb-trino

or mount a local array into the Docker container with the -v option:

docker run -it --rm -v /local/array/path:/data/local_array tiledb-trino

In the above example, replace /local/array/path with the path to the array folder on your local machine. The /data/local_array path is the path you will use within the Docker image to access /local/array/path (you can replace it with another path of your choice).

Installation

Currently, this connector is built as a plugin. It must be packaged and installed on the TrinoDB instances.

Latest Release

Download the latest release and skip to the section Installation on existing Trino instance.

Building Connector From Source

The TileDB connector can be built using the following command from the top level directory of the Trino source.

./mvnw package

Tests can be skipped by adding -DskipTests

./mvnw package -DskipTests

Installation on a Trino instance

First clone Trino

git clone https://github.com/trinodb/trino.git

Install Trino

./mvnw clean install -DskipTests

Create a TileDB directory

mkdir trino/core/trino-server/target/trino-server-***-SNAPSHOT/plugin/tiledb

Build and copy the TileDB-Trino jars to the TileDB directory

cp TileDB-Trino/target/*.jar trino/core/trino-server/target/trino-server-***-SNAPSHOT/plugin/tiledb

Create two nested directories "etc/catalog" which include the tiledb.properties file and move them to:

trino/core/trino-server/target/trino-server-***-SNAPSHOT/

Launch the Trino Server

trino/core/trino-server/target/trino-server-***-SNAPSHOT/bin/launcher run

Launch the Trino-CLI with the TileDB plugin

./trino/client/trino-cli/target/trino-cli-***-SNAPSHOT-executable.jar --schema tiledb --catalog tiledb

Configuration

See docs/Configuration.md.

Limitations

See docs/Limitations.md.

Arrays as SQL Tables

When a multi-dimensional array is queried in Trino, the dimensions are converted to table columns for the result set. TileDB array attributes are also returned as columns.

Dense Arrays

Consider the following example 2D 4x2 dense array with dim1 and dim2 as the dimensions and a single attribute a:

+-------+-------+
|       |       |
|  a:1  |  a:2  |
|       |       |
+---------------+
|       |       |
|  a:3  |  a:4  |
|       |       |
+---------------+
|       |       |
|  a:5  |  a:6  |
|       |       |
+---------------+
|       |       |
|  a:7  |  a:8  |
|       |       |
+-------+-------+

When queried via Trino the results are mapped to the following table:

 dim1 | dim2 | a
------+------+---
    1 |    1 | 1
    1 |    2 | 2
    2 |    1 | 3
    2 |    2 | 4
    3 |    1 | 5
    3 |    2 | 6
    4 |    1 | 7
    4 |    2 | 8

Sparse Arrays

A sparse array is materialized similarly to dense arrays. The following example depicts a 2D 4x4 sparse array with dimensions dim1, dim2 and a single attribute a. Notice that this array has mostly empty cells.

+-------+-------+-------+-------+
|       |       |       |       |
|  a:1  |       |       |       |
|       |       |       |       |
+-------------------------------+
|       |       |       |       |
|       |       |  a:3  |  a:2  |
|       |       |       |       |
+-------------------------------+
|       |       |       |       |
|       |       |       |       |
|       |       |       |       |
+-------------------------------+
|       |       |       |       |
|       |       |       |       |
|       |       |       |       |
+-------+-------+-------+-------+

For sparse arrays only non-empty cells are materialized and returned. The above array is modeled in Trino as a table of the form:

 dim1 | dim2 | a
------+------+---
    1 |    1 | 1
    2 |    4 | 2
    2 |    3 | 3