This repository is the source code of the paper Legal Feature Enhanced Semantic Matching Network for Similar Case Matching implemented via PyTorch.
-
Python 3.6+
-
PyTorch 1.1.0+
-
Python requirements: run
pip install -r requirements.txt
. -
Nvidia Apex (optional): Nvidia Apex enables mixed-precision training to accelerate the training procedure and decrease the memory usage. See official doc for installation. Specify
fp16 = False
in train.py to disable it. -
Hardware: we recommend to use GPU to train LFESM. In our experiment, when we train the model with
batch_size = 3
andfp16 = True
on 2* GeForce RTX 2080, it takes 1~1.5 hour to finish one epoch. -
Dataset: see Dataset.
-
BERT pretrained model: download the pretrained model here, and unzip the model into
./bert
folder. See OpenCLaP for more details.
python train.py
Our default parameters:
config = {
"max_length": 512,
"epochs": 6,
"batch_size": 3,
"learning_rate": 2e-5,
"fp16": True,
"fp16_opt_level": "O1",
"max_grad_norm": 1.0,
"warmup_steps": 0.1,
}
python predict.py
The output of the prediction is stored in ./data/test/output.txt
.
Run ./scripts/judger.py
to calculate the accuracy score.
Download the dataset CAIL2019-SCM from here. Check CAIL2019 for more details about the dataset.
Table 1: The amount of data in CAIL2019-SCM
Dataset | sim(a, b)>sim(a,c) | sim(a,b)<sim(a,c) | Total Amount |
---|---|---|---|
Train | 2,596 | 2,506 | 5,102 |
Valid | 837 | 663 | 1,500 |
Test | 803 | 733 | 1,536 |
Unzip the dataset and put the train, valid, and test set into raw
, valid
, and test
folder of ./data
folder.
To fulfill the distribution of dataset and enhance the performance of model training, we apply data augmentation to the dataset.
Let's denote the original triplet as (A, B, C)
. We add (A, C, B)
into the dataset, which makes the amount multiply twice. We also tried other methods like (B, C, A)
and (B, A, C)
, but they did not work.
lfesm
├── bert # BERT pretrained model
├── config.py # Model config and hyper parameter
├── data # Store the dataset
├── data.py # Define the dataset
│ └── ...
├── model.py # Define the model trainer
├── models # Define the models
│ ├── baseline
│ ├── esim
│ ├── feature.py
│ ├── lfesm.py
├── predict.py # Predict
├── scripts # Utilities
│ └── ...
├── train.py # Train
└── util.py # Utility function
Table 2: Experimental results of methods on CAIL2019-SCM
Method | Valid | Test | |
---|---|---|---|
Baseline | BERT | 61.93 | 67.32 |
LSTM | 62.00 | 68.00 | |
CNN | 62.27 | 69.53 | |
Our Baseline | BERT | 64.53 | 65.59 |
LSTM | 64.33 | 66.34 | |
CNN | 64.73 | 67.25 | |
Best Score | 11.2yuan | 66.73 | 72.07 |
backward | 67.73 | 71.81 | |
AlphaCourt | 70.07 | 72.66 | |
Our Method | LFESM | 70.01 | 74.15 |
[1] coetaur0/ESIM
[2] padeoe/cail2019
[3] thunlp/OpenCLaP
[4] CAIL2019-SCM
[5] Taoooo9/Cail_Text_similarity_esimtribert
We sincerely appreciate Taoooo9‘s help.
Author: Zhilong Hong, Qifei Zhou, Rong Zhang, Weiping Li, and Tong Mo.