Skip to content

基于同感受野可变形卷积网络的视频去模糊

License

Notifications You must be signed in to change notification settings

TencentCloud/ERDN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ERDN: Equivalent Receptive Field Deformable Network for Video Deblurring (ECCV 2022)

[[Paper]]

Bangrui Jiang, Zhihuai Xie, Zhen Xia, Songnan Li, Shan Liu

Tencent Media Lab, Shenzhen, China

Dependencies

Installation

Clone repo

git clone xxx
cd ERDN

Install dependent packages

  • torchvision
  • tqdm
  • imageio
  • numpy
  • opencv-python

We use Deformable-Convolution-v2 and install as follows

cd dcn
bash make.sh
cd ..

Data Preparation

We use DVD for training and testing. The dataset can be download as follows

wget http://www.cs.ubc.ca/labs/imager/tr/2017/DeepVideoDeblurring/DeepVideoDeblurring_Dataset.zip
unzip DeepVideoDeblurring_Dataset.zip

The data should be placed according to the following format

|--DVD
    |--Train
        |--blur 
            |--video 1
                |--frame 1
                |--frame 2
                    :  
            |--video 2
                :
            |--video n
        |--gt
            |--video 1
                |--frame 1
                |--frame 2
                    :
            |--video 2
                :
            |--video n
    |--Test
        |--blur
            |--video 1
                :
        |--gt
            |--video 1
                :

We provide preprocess script for DVD dataset

python script/arrange.py --data_path path_to_origin_DVD_dataset --out_path path_to_DVD

Quick Inference

Download pre-trained models from DVD (key: csig).

Run following command for quick inference.

python inference.py \
--data_path path_to_DVD \
--model_path path_to_model \
--result_path path_to_save_result \ 
--save_image whether_to_save_image

Training

The training script will be released soon.

About

基于同感受野可变形卷积网络的视频去模糊

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published