Skip to content

Commit

Permalink
pnnx convert nn.Softmax2d (#4324)
Browse files Browse the repository at this point in the history
  • Loading branch information
nihui authored Nov 2, 2022
1 parent bcf06bd commit b8d40a9
Show file tree
Hide file tree
Showing 9 changed files with 210 additions and 1 deletion.
2 changes: 1 addition & 1 deletion tools/pnnx/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -547,7 +547,7 @@ TORCH_LIBRARY(upfirdn2d_op, m) {
|nn.Sigmoid | :heavy_check_mark: | :heavy_check_mark: |
|nn.SiLU | :heavy_check_mark: | :heavy_check_mark: |
|nn.Softmax | :heavy_check_mark: | :heavy_check_mark: |
|nn.Softmax2d | |
|nn.Softmax2d | :heavy_check_mark: | :heavy_check_mark: |
|nn.Softmin | :heavy_check_mark: |
|nn.Softplus | :heavy_check_mark: |
|nn.Softshrink | :heavy_check_mark: |
Expand Down
2 changes: 2 additions & 0 deletions tools/pnnx/src/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -79,6 +79,7 @@ set(pnnx_pass_level1_SRCS
pass_level1/nn_Sigmoid.cpp
pass_level1/nn_SiLU.cpp
pass_level1/nn_Softmax.cpp
pass_level1/nn_Softmax2d.cpp
pass_level1/nn_Softmin.cpp
pass_level1/nn_Softplus.cpp
pass_level1/nn_Softshrink.cpp
Expand Down Expand Up @@ -454,6 +455,7 @@ set(pnnx_pass_ncnn_SRCS
pass_ncnn/nn_Sigmoid.cpp
pass_ncnn/nn_SiLU.cpp
pass_ncnn/nn_Softmax.cpp
pass_ncnn/nn_Softmax2d.cpp
pass_ncnn/nn_Tanh.cpp
pass_ncnn/nn_Upsample.cpp
pass_ncnn/nn_UpsamplingBilinear2d.cpp
Expand Down
37 changes: 37 additions & 0 deletions tools/pnnx/src/pass_level1/nn_Softmax2d.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,37 @@
// Tencent is pleased to support the open source community by making ncnn available.
//
// Copyright (C) 2022 THL A29 Limited, a Tencent company. All rights reserved.
//
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
// in compliance with the License. You may obtain a copy of the License at
//
// https://opensource.org/licenses/BSD-3-Clause
//
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.

#include "pass_level1.h"

#include "../utils.h"

namespace pnnx {

class Softmax2d : public FuseModulePass
{
public:
const char* match_type_str() const
{
return "__torch__.torch.nn.modules.activation.Softmax2d";
}

const char* type_str() const
{
return "nn.Softmax2d";
}
};

REGISTER_GLOBAL_PNNX_FUSE_MODULE_PASS(Softmax2d)

} // namespace pnnx
55 changes: 55 additions & 0 deletions tools/pnnx/src/pass_ncnn/nn_Softmax2d.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,55 @@
// Tencent is pleased to support the open source community by making ncnn available.
//
// Copyright (C) 2022 THL A29 Limited, a Tencent company. All rights reserved.
//
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
// in compliance with the License. You may obtain a copy of the License at
//
// https://opensource.org/licenses/BSD-3-Clause
//
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.

#include "pass_ncnn.h"

namespace pnnx {

namespace ncnn {

class nn_Softmax2d : public GraphRewriterPass
{
public:
const char* match_pattern_graph() const
{
return R"PNNXIR(7767517
3 2
pnnx.Input input 0 1 input
nn.Softmax2d op_0 1 1 input out
pnnx.Output output 1 0 out
)PNNXIR";
}

const char* type_str() const
{
return "Softmax";
}

const char* name_str() const
{
return "softmax2d";
}

void write(Operator* op, const std::map<std::string, Parameter>& /*captured_params*/) const
{
op->params["0"] = 0;
op->params["1"] = 1;
}
};

REGISTER_GLOBAL_PNNX_NCNN_GRAPH_REWRITER_PASS(nn_Softmax2d, 20)

} // namespace ncnn

} // namespace pnnx
1 change: 1 addition & 0 deletions tools/pnnx/src/pass_ncnn/solve_batch_index.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -98,6 +98,7 @@ static bool is_known_operator_with_batch_index_0(const Operator* op)
"nn.ReplicationPad1d",
"nn.ReplicationPad2d",
"nn.ReplicationPad3d",
"nn.Softmax2d",
"nn.Upsample",
"nn.UpsamplingBilinear2d",
"nn.UpsamplingNearest2d",
Expand Down
1 change: 1 addition & 0 deletions tools/pnnx/tests/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -143,6 +143,7 @@ pnnx_add_test(nn_SELU)
pnnx_add_test(nn_Sigmoid)
pnnx_add_test(nn_SiLU)
pnnx_add_test(nn_Softmax)
pnnx_add_test(nn_Softmax2d)
pnnx_add_test(nn_Softmin)
pnnx_add_test(nn_Softplus)
pnnx_add_test(nn_Softshrink)
Expand Down
1 change: 1 addition & 0 deletions tools/pnnx/tests/ncnn/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -115,6 +115,7 @@ pnnx_ncnn_add_test(nn_SELU)
pnnx_ncnn_add_test(nn_Sigmoid)
pnnx_ncnn_add_test(nn_SiLU)
pnnx_ncnn_add_test(nn_Softmax)
pnnx_ncnn_add_test(nn_Softmax2d)
pnnx_ncnn_add_test(nn_Tanh)
pnnx_ncnn_add_test(nn_Upsample)
pnnx_ncnn_add_test(nn_UpsamplingBilinear2d)
Expand Down
56 changes: 56 additions & 0 deletions tools/pnnx/tests/ncnn/test_nn_Softmax2d.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,56 @@
# Tencent is pleased to support the open source community by making ncnn available.
#
# Copyright (C) 2022 THL A29 Limited, a Tencent company. All rights reserved.
#
# Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
# in compliance with the License. You may obtain a copy of the License at
#
# https://opensource.org/licenses/BSD-3-Clause
#
# Unless required by applicable law or agreed to in writing, software distributed
# under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
# CONDITIONS OF ANY KIND, either express or implied. See the License for the
# specific language governing permissions and limitations under the License.

import torch
import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()

self.act_0 = nn.Softmax2d()

def forward(self, x):
x = self.act_0(x)
return x

def test():
net = Model()
net.eval()

torch.manual_seed(0)
x = torch.rand(1, 12, 24, 64)

a = net(x)

# export torchscript
mod = torch.jit.trace(net, x)
mod.save("test_nn_Softmax2d.pt")

# torchscript to pnnx
import os
os.system("../../src/pnnx test_nn_Softmax2d.pt inputshape=[1,12,24,64]")

# ncnn inference
import test_nn_Softmax2d_ncnn
b = test_nn_Softmax2d_ncnn.test_inference()

return torch.allclose(a, b, 1e-4, 1e-4)

if __name__ == "__main__":
if test():
exit(0)
else:
exit(1)
56 changes: 56 additions & 0 deletions tools/pnnx/tests/test_nn_Softmax2d.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,56 @@
# Tencent is pleased to support the open source community by making ncnn available.
#
# Copyright (C) 2022 THL A29 Limited, a Tencent company. All rights reserved.
#
# Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
# in compliance with the License. You may obtain a copy of the License at
#
# https://opensource.org/licenses/BSD-3-Clause
#
# Unless required by applicable law or agreed to in writing, software distributed
# under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
# CONDITIONS OF ANY KIND, either express or implied. See the License for the
# specific language governing permissions and limitations under the License.

import torch
import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()

self.act_0 = nn.Softmax2d()

def forward(self, x):
x = self.act_0(x)
return x

def test():
net = Model()
net.eval()

torch.manual_seed(0)
x = torch.rand(1, 12, 24, 64)

a = net(x)

# export torchscript
mod = torch.jit.trace(net, x)
mod.save("test_nn_Softmax2d.pt")

# torchscript to pnnx
import os
os.system("../src/pnnx test_nn_Softmax2d.pt inputshape=[1,12,24,64]")

# pnnx inference
import test_nn_Softmax2d_pnnx
b = test_nn_Softmax2d_pnnx.test_inference()

return torch.equal(a, b)

if __name__ == "__main__":
if test():
exit(0)
else:
exit(1)

0 comments on commit b8d40a9

Please sign in to comment.