Skip to content

Commit

Permalink
Usage Stats Collection (vllm-project#2852)
Browse files Browse the repository at this point in the history
  • Loading branch information
yhu422 authored Mar 29, 2024
1 parent 069577d commit d2c31f2
Show file tree
Hide file tree
Showing 15 changed files with 362 additions and 24 deletions.
2 changes: 2 additions & 0 deletions .buildkite/test-template.j2
Original file line number Diff line number Diff line change
Expand Up @@ -53,6 +53,8 @@ steps:
nvidia.com/gpu: "{{ step.num_gpus or default_num_gpu }}"
{% endif %}
env:
- name: VLLM_USAGE_SOURCE
value: ci-test
- name: HF_TOKEN
valueFrom:
secretKeyRef:
Expand Down
2 changes: 2 additions & 0 deletions Dockerfile
Original file line number Diff line number Diff line change
Expand Up @@ -132,5 +132,7 @@ RUN --mount=type=cache,target=/root/.cache/pip \
COPY --from=build /workspace/vllm/*.so /workspace/vllm/
COPY vllm vllm

ENV VLLM_USAGE_SOURCE production-docker-image

ENTRYPOINT ["python3", "-m", "vllm.entrypoints.openai.api_server"]
#################### OPENAI API SERVER ####################
1 change: 1 addition & 0 deletions docs/source/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -73,6 +73,7 @@ Documentation
serving/deploying_with_docker
serving/distributed_serving
serving/metrics
serving/usage_stats
serving/integrations

.. toctree::
Expand Down
57 changes: 57 additions & 0 deletions docs/source/serving/usage_stats.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,57 @@
# Usage Stats Collection

vLLM collects anonymous usage data by default to help the engineering team better understand which hardware and model configurations are widely used. This data allows them to prioritize their efforts on the most common workloads. The collected data is transparent, does not contain any sensitive information, and will be publicly released for the community's benefit.

## What data is collected?

You can see the up to date list of data collected by vLLM in the [usage_lib.py](https://github.com/vllm-project/vllm/blob/main/vllm/usage/usage_lib.py).

Here is an example as of v0.4.0:

```json
{
"uuid": "fbe880e9-084d-4cab-a395-8984c50f1109",
"provider": "GCP",
"num_cpu": 24,
"cpu_type": "Intel(R) Xeon(R) CPU @ 2.20GHz",
"cpu_family_model_stepping": "6,85,7",
"total_memory": 101261135872,
"architecture": "x86_64",
"platform": "Linux-5.10.0-28-cloud-amd64-x86_64-with-glibc2.31",
"gpu_count": 2,
"gpu_type": "NVIDIA L4",
"gpu_memory_per_device": 23580639232,
"model_architecture": "OPTForCausalLM",
"vllm_version": "0.3.2+cu123",
"context": "LLM_CLASS",
"log_time": 1711663373492490000,
"source": "production",
"dtype": "torch.float16",
"tensor_parallel_size": 1,
"block_size": 16,
"gpu_memory_utilization": 0.9,
"quantization": null,
"kv_cache_dtype": "auto",
"enable_lora": false,
"enable_prefix_caching": false,
"enforce_eager": false,
"disable_custom_all_reduce": true
}
```

You can preview the collected data by running the following command:

```bash
tail ~/.config/vllm/usage_stats.json
```

## Opt-out of Usage Stats Collection

You can opt-out of usage stats collection by setting the VLLM_NO_USAGE_STATS or DO_NOT_TRACK environment variable, or by creating a ~/.config/vllm/do_not_track file:

```bash
# Any of the following methods can disable usage stats collection
export VLLM_NO_USAGE_STATS=1
export DO_NOT_TRACK=1
mkdir -p ~/.config/vllm && touch ~/.config/vllm/do_not_track
```
3 changes: 3 additions & 0 deletions requirements-neuron.txt
Original file line number Diff line number Diff line change
Expand Up @@ -7,3 +7,6 @@ fastapi
uvicorn[standard]
pydantic >= 2.0 # Required for OpenAI server.
prometheus_client >= 0.18.0
requests
psutil
py-cpuinfo
2 changes: 2 additions & 0 deletions requirements-rocm.txt
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,8 @@ cmake>=3.21
ninja # For faster builds.
typing-extensions>=4.8.0
starlette
requests
py-cpuinfo
psutil
ray >= 2.9
sentencepiece # Required for LLaMA tokenizer.
Expand Down
3 changes: 3 additions & 0 deletions requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,9 @@ ray >= 2.9
sentencepiece # Required for LLaMA tokenizer.
numpy
torch == 2.1.2
requests
psutil
py-cpuinfo
transformers >= 4.39.1 # Required for StarCoder2 & Llava.
xformers == 0.0.23.post1 # Required for CUDA 12.1.
fastapi
Expand Down
29 changes: 18 additions & 11 deletions vllm/engine/async_llm_engine.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,7 @@
from vllm.outputs import RequestOutput
from vllm.sampling_params import SamplingParams
from vllm.sequence import MultiModalData
from vllm.usage.usage_lib import UsageContext

logger = init_logger(__name__)
ENGINE_ITERATION_TIMEOUT_S = int(
Expand Down Expand Up @@ -319,9 +320,12 @@ def __init__(self,
self._errored_with: Optional[BaseException] = None

@classmethod
def from_engine_args(cls,
engine_args: AsyncEngineArgs,
start_engine_loop: bool = True) -> "AsyncLLMEngine":
def from_engine_args(
cls,
engine_args: AsyncEngineArgs,
start_engine_loop: bool = True,
usage_context: UsageContext = UsageContext.ENGINE_CONTEXT,
) -> "AsyncLLMEngine":
"""Creates an async LLM engine from the engine arguments."""
# Create the engine configs.
engine_configs = engine_args.create_engine_configs()
Expand All @@ -341,14 +345,17 @@ def from_engine_args(cls,
from vllm.executor.gpu_executor import GPUExecutorAsync
executor_class = GPUExecutorAsync
# Create the async LLM engine.
engine = cls(parallel_config.worker_use_ray,
engine_args.engine_use_ray,
*engine_configs,
executor_class,
log_requests=not engine_args.disable_log_requests,
log_stats=not engine_args.disable_log_stats,
max_log_len=engine_args.max_log_len,
start_engine_loop=start_engine_loop)
engine = cls(
parallel_config.worker_use_ray,
engine_args.engine_use_ray,
*engine_configs,
executor_class,
log_requests=not engine_args.disable_log_requests,
log_stats=not engine_args.disable_log_stats,
max_log_len=engine_args.max_log_len,
start_engine_loop=start_engine_loop,
usage_context=usage_context,
)
return engine

@property
Expand Down
53 changes: 49 additions & 4 deletions vllm/engine/llm_engine.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,7 @@
from vllm.executor.executor_base import ExecutorBase
from vllm.logger import init_logger
from vllm.lora.request import LoRARequest
from vllm.model_executor.model_loader import get_architecture_class_name
from vllm.outputs import RequestOutput
from vllm.sampling_params import SamplingParams
from vllm.sequence import (MultiModalData, SamplerOutput, Sequence,
Expand All @@ -21,6 +22,8 @@
from vllm.transformers_utils.detokenizer import Detokenizer
from vllm.transformers_utils.tokenizer_group import (BaseTokenizerGroup,
get_tokenizer_group)
from vllm.usage.usage_lib import (UsageContext, is_usage_stats_enabled,
usage_message)
from vllm.utils import Counter

logger = init_logger(__name__)
Expand Down Expand Up @@ -53,6 +56,7 @@ class LLMEngine:
executor_class: The model executor class for managing distributed
execution.
log_stats: Whether to log statistics.
usage_context: Specified entry point, used for usage info collection
"""

def __init__(
Expand All @@ -66,6 +70,7 @@ def __init__(
vision_language_config: Optional["VisionLanguageConfig"],
executor_class: Type[ExecutorBase],
log_stats: bool,
usage_context: UsageContext = UsageContext.ENGINE_CONTEXT,
) -> None:
logger.info(
f"Initializing an LLM engine (v{vllm.__version__}) with config: "
Expand Down Expand Up @@ -108,6 +113,39 @@ def __init__(
device_config, lora_config,
vision_language_config)

# If usage stat is enabled, collect relevant info.
if is_usage_stats_enabled():
usage_message.report_usage(
get_architecture_class_name(model_config),
usage_context,
extra_kvs={
# Common configuration
"dtype":
str(model_config.dtype),
"tensor_parallel_size":
parallel_config.tensor_parallel_size,
"block_size":
cache_config.block_size,
"gpu_memory_utilization":
cache_config.gpu_memory_utilization,

# Quantization
"quantization":
model_config.quantization,
"kv_cache_dtype":
cache_config.cache_dtype,

# Feature flags
"enable_lora":
bool(lora_config),
"enable_prefix_caching":
cache_config.enable_prefix_caching,
"enforce_eager":
model_config.enforce_eager,
"disable_custom_all_reduce":
parallel_config.disable_custom_all_reduce,
})

# Ping the tokenizer to ensure liveness if it runs in a
# different process.
self.tokenizer.ping()
Expand All @@ -125,7 +163,11 @@ def __init__(
self.stat_logger.info("cache_config", self.cache_config)

@classmethod
def from_engine_args(cls, engine_args: EngineArgs) -> "LLMEngine":
def from_engine_args(
cls,
engine_args: EngineArgs,
usage_context: UsageContext = UsageContext.ENGINE_CONTEXT,
) -> "LLMEngine":
"""Creates an LLM engine from the engine arguments."""
# Create the engine configs.
engine_configs = engine_args.create_engine_configs()
Expand All @@ -147,9 +189,12 @@ def from_engine_args(cls, engine_args: EngineArgs) -> "LLMEngine":
executor_class = GPUExecutor

# Create the LLM engine.
engine = cls(*engine_configs,
executor_class=executor_class,
log_stats=not engine_args.disable_log_stats)
engine = cls(
*engine_configs,
executor_class=executor_class,
log_stats=not engine_args.disable_log_stats,
usage_context=usage_context,
)
return engine

def __reduce__(self):
Expand Down
5 changes: 3 additions & 2 deletions vllm/entrypoints/api_server.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,7 @@
from vllm.engine.arg_utils import AsyncEngineArgs
from vllm.engine.async_llm_engine import AsyncLLMEngine
from vllm.sampling_params import SamplingParams
from vllm.usage.usage_lib import UsageContext
from vllm.utils import random_uuid

TIMEOUT_KEEP_ALIVE = 5 # seconds.
Expand Down Expand Up @@ -100,9 +101,9 @@ async def stream_results() -> AsyncGenerator[bytes, None]:
help="FastAPI root_path when app is behind a path based routing proxy")
parser = AsyncEngineArgs.add_cli_args(parser)
args = parser.parse_args()

engine_args = AsyncEngineArgs.from_cli_args(args)
engine = AsyncLLMEngine.from_engine_args(engine_args)
engine = AsyncLLMEngine.from_engine_args(
engine_args, usage_context=UsageContext.API_SERVER)

app.root_path = args.root_path
uvicorn.run(app,
Expand Down
4 changes: 3 additions & 1 deletion vllm/entrypoints/llm.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@
from vllm.outputs import RequestOutput
from vllm.sampling_params import SamplingParams
from vllm.sequence import MultiModalData
from vllm.usage.usage_lib import UsageContext
from vllm.utils import Counter


Expand Down Expand Up @@ -108,7 +109,8 @@ def __init__(
disable_custom_all_reduce=disable_custom_all_reduce,
**kwargs,
)
self.llm_engine = LLMEngine.from_engine_args(engine_args)
self.llm_engine = LLMEngine.from_engine_args(
engine_args, usage_context=UsageContext.LLM_CLASS)
self.request_counter = Counter()

def get_tokenizer(
Expand Down
5 changes: 3 additions & 2 deletions vllm/entrypoints/openai/api_server.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,7 @@
from vllm.entrypoints.openai.serving_chat import OpenAIServingChat
from vllm.entrypoints.openai.serving_completion import OpenAIServingCompletion
from vllm.logger import init_logger
from vllm.usage.usage_lib import UsageContext

TIMEOUT_KEEP_ALIVE = 5 # seconds

Expand Down Expand Up @@ -151,9 +152,9 @@ async def authentication(request: Request, call_next):
served_model = args.served_model_name
else:
served_model = args.model

engine_args = AsyncEngineArgs.from_cli_args(args)
engine = AsyncLLMEngine.from_engine_args(engine_args)
engine = AsyncLLMEngine.from_engine_args(
engine_args, usage_context=UsageContext.OPENAI_API_SERVER)
openai_serving_chat = OpenAIServingChat(engine, served_model,
args.response_role,
args.lora_modules,
Expand Down
13 changes: 9 additions & 4 deletions vllm/model_executor/model_loader.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
"""Utilities for selecting and loading models."""
import contextlib
from typing import Type
from typing import Tuple, Type

import torch
import torch.nn as nn
Expand All @@ -25,7 +25,8 @@ def _set_default_torch_dtype(dtype: torch.dtype):
torch.set_default_dtype(old_dtype)


def _get_model_architecture(model_config: ModelConfig) -> Type[nn.Module]:
def _get_model_architecture(
model_config: ModelConfig) -> Tuple[Type[nn.Module], str]:
architectures = getattr(model_config.hf_config, "architectures", [])
# Special handling for quantized Mixtral.
# FIXME(woosuk): This is a temporary hack.
Expand All @@ -36,17 +37,21 @@ def _get_model_architecture(model_config: ModelConfig) -> Type[nn.Module]:
for arch in architectures:
model_cls = ModelRegistry.load_model_cls(arch)
if model_cls is not None:
return model_cls
return (model_cls, arch)
raise ValueError(
f"Model architectures {architectures} are not supported for now. "
f"Supported architectures: {ModelRegistry.get_supported_archs()}")


def get_architecture_class_name(model_config: ModelConfig) -> str:
return _get_model_architecture(model_config)[1]


def get_model(model_config: ModelConfig, device_config: DeviceConfig,
**kwargs) -> nn.Module:
lora_config = kwargs.get("lora_config", None)
vision_language_config = kwargs.get("vision_language_config", None)
model_class = _get_model_architecture(model_config)
model_class = _get_model_architecture(model_config)[0]

# Get the (maybe quantized) linear method.
linear_method = None
Expand Down
Empty file added vllm/usage/__init__.py
Empty file.
Loading

0 comments on commit d2c31f2

Please sign in to comment.