Data Setting for YOLOv5
Parent/datasets/MakeData$ python saveData.py
100%|████████████████████████████████████████████████████████████████████████| 2235/2235 [00:45<00:00, 49.47it/s]
==============================
No. Total Data: 2235
==============================
Training Data: No. Images 1861
Training Data: No. GT 1861
Validation Data: No. Images 187
Validation Data: No. GT 187
Test Data: No. Images 187
Test Data: No. GT 187
==============================
No. Total Image Data: 2235
No. Total GT Data: 2235
==============================
Parent/datasets/MakeData$ python labelme2YOLOv5.py
100%|█████████████████████████████████████████████| 5/5 [00:00<00:00, 9.03it/s]
==============================
No. Total Data: 5
==============================
Training Data: No. Images 3
Training Data: No. GT 3
Validation Data: No. Images 2
Validation Data: No. GT 2
==============================
No. Total Image Data: 5
No. Total GT Data: 5
==============================
FlickrLogos_47
Parent/YOLOv5$ python segment/train.py --data LogoRec.yaml --epochs ${epoch} --batch-size ${batch_size} --weights yolov5${모델 버전}-seg.pt #--resume
labelme
Parent/YOLOv5$ python segment/train.py --data labelme.yaml --epochs ${epoch} --batch-size ${batch_size} --weights ${weights}.pt
--data
: 데이터의 정보가 저장된.yaml
파일 지정--epochs
: Training 시 사용될 epoch의 수 지정--batch-size
: Training 시 사용될 batch size 지정--weights
: Fine-tuning에 사용될 pre-trained 가중치--resume
: Training을 이어서 할 수 있는 옵션
Parent/YOLOv5$ python segment/val.py --data LogoRec.yaml --batch-size ${batch_size} --weights ${weights}
--data
: 데이터의 정보가 저장된.yaml
파일 지정--batch-size
: Validation 시 사용될 batch size 지정--weights
: Validation을 위해 사용할 가중치
Detection
Parent/YOLOv5$ python segment/predict.py --weights runs/train-seg/${훈련된 가중치}/weights/best.pt --source ../datasets/LogoRec/images/test --conf-thres ${threshold} --bms 0
Segmentation
Parent/YOLOv5$ python segment/predict.py --weights runs/train-seg/${훈련된 가중치}/weights/best.pt --source ../datasets/LogoRec/images/test --conf-thres ${threshold} --bms 1
Mosaic
Parent/YOLOv5$ python segment/predict.py --weights runs/train-seg/${훈련된 가중치}/weights/best.pt --source ../datasets/LogoRec/images/test --conf-thres ${threshold} --bms 2
🎉 Demo! 🎉
Parent/YOLOv5$ python segment/predict.py --weights runs/train-seg/${훈련된 가중치}/weights/best.pt --source 0 --conf-thres ${threshold} --bms 3
--weights
: Test를 위해 사용할 가중치--source
: Test를 위해 사용할 데이터 (0
으로 지정 시 캠 사용)--conf-thres
: Confidence threshold--bms
: BoonMoSa! (For Real-Time Operation)0
: Detection1
: Segmentation2
: Mosaic3
: Demo (Raw Image -> Detection -> Segmentation -> Mosaic)