Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fixes STIR TOF AcquisitionData algebra #1208

Merged
merged 3 commits into from
Aug 22, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
87 changes: 31 additions & 56 deletions src/common/Utilities.py
Original file line number Diff line number Diff line change
Expand Up @@ -597,93 +597,91 @@ def test_data_container_algebra(test, x, eps=1e-5):

s = x.norm()
t = numpy.linalg.norm(ax)
test.check_if_equal(1, abs(t - s) <= eps * abs(t))
# needs increased tolerance for large data size
test.check_if_equal_within_tolerance(t, s, 0, eps * 10);

s = x.max()
t = numpy.max(ax)
test.check_if_equal(1, abs(t - s) <= eps * abs(t))
test.check_if_equal_within_tolerance(t, s, 0, eps);

s = x.sum()
t = numpy.sum(ax)
r = numpy.sum(abs(ax))
test.check_if_equal(1, abs(t - s) <= eps * r)
test.check_if_equal_within_tolerance(t, s, 0, eps);

s = x.dot(y)
t = numpy.vdot(ay, ax)
test.check_if_equal(1, abs(t - s) <= eps * abs(t))
# needs increased tolerance for large data size
test.check_if_equal_within_tolerance(t, s, 0, eps * 10);

x2 = x.multiply(2)
ax2 = x2.as_array()
s = numpy.linalg.norm(ax2 - 2*ax)
t = numpy.linalg.norm(ax2)
test.check_if_equal(1, abs(s) <= eps * abs(t))
test.check_if_zero_within_tolerance(s, eps * t)

x2 *= 0
x.multiply(2, out=x2)
ax2 = x2.as_array()
s = numpy.linalg.norm(ax2 - 2*ax)
t = numpy.linalg.norm(ax2)
test.check_if_equal(1, abs(s) <= eps * abs(t))
test.check_if_zero_within_tolerance(s, eps * t)

t = x2.norm()
x2 -= x*2
s = x2.norm()
test.check_if_equal(1, abs(s) <= eps * abs(t))
test.check_if_zero_within_tolerance(s, eps * t)

y = x.multiply(x)
ax = x.as_array()
ay = y.as_array()
s = numpy.linalg.norm(ay - ax * ax)
t = numpy.linalg.norm(ay)
test.check_if_equal(1, abs(s) <= eps * abs(t))
test.check_if_zero_within_tolerance(s, eps * t)

y *= 0
x.multiply(x, out=y)
ax = x.as_array()
ay = y.as_array()
s = numpy.linalg.norm(ay - ax * ax)
t = numpy.linalg.norm(ay)
test.check_if_equal(1, abs(s) <= eps * abs(t))
test.check_if_zero_within_tolerance(s, eps * t)

z = x*y
az = z.as_array()
s = numpy.linalg.norm(az - ax * ay)
t = numpy.linalg.norm(az)
test.check_if_equal(1, abs(s) <= eps * abs(t))
test.check_if_zero_within_tolerance(s, eps * t)

y = x + 1
ax = x.as_array()
ay = y.as_array()
s = numpy.linalg.norm(ay - (ax + 1))
t = numpy.linalg.norm(ay)
test.check_if_equal(1, abs(s) <= eps * abs(t))
test.check_if_zero_within_tolerance(s, eps * t)

y *= 0
x.add(1, out=y)
ax = x.as_array()
ay = y.as_array()
s = numpy.linalg.norm(ay - (ax + 1))
t = numpy.linalg.norm(ay)
test.check_if_equal(1, abs(s) <= eps * abs(t))
test.check_if_zero_within_tolerance(s, eps * t)

z = x/y
az = z.as_array()
s = numpy.linalg.norm(az - ax/ay)
t = numpy.linalg.norm(az)
test.check_if_equal(1, abs(s) <= eps * abs(t))
test.check_if_zero_within_tolerance(s, eps * t)

z = x/2
az = z.as_array()
s = numpy.linalg.norm(az - ax/2)
t = numpy.linalg.norm(az)
test.check_if_equal(1, abs(s) <= eps * abs(t))
test.check_if_zero_within_tolerance(s, eps * t)

z *= 0
x.divide(y, out=z)
az = z.as_array()
s = numpy.linalg.norm(az - ax/ay)
t = numpy.linalg.norm(az)
test.check_if_equal(1, abs(s) <= eps * abs(t))
test.check_if_zero_within_tolerance(s, eps * t)

y = x.sapyb(1, x, -1)
s = y.norm()
Expand Down Expand Up @@ -723,7 +721,6 @@ def test_data_container_algebra(test, x, eps=1e-5):
test.check_if_equal(0, s)

y = x.maximum(z)
ax = x.as_array()
ay = y.as_array()
az = z.as_array()
ay -= numpy.maximum(ax, az)
Expand All @@ -732,30 +729,26 @@ def test_data_container_algebra(test, x, eps=1e-5):

y *= 0
x.maximum(z, out=y)
ax = x.as_array()
ay = y.as_array()
az = z.as_array()
ay -= numpy.maximum(ax, az)
s = numpy.linalg.norm(ay)
test.check_if_equal(0, s)

y = x.maximum(0)
ax = x.as_array()
ay = y.as_array()
ay -= numpy.maximum(ax, 0)
s = numpy.linalg.norm(ay)
test.check_if_equal(0, s)

y *= 0
x.maximum(0, out=y)
ax = x.as_array()
ay = y.as_array()
ay -= numpy.maximum(ax, 0)
s = numpy.linalg.norm(ay)
test.check_if_equal(0, s)

y = x.minimum(z)
ax = x.as_array()
ay = y.as_array()
az = z.as_array()
ay -= numpy.minimum(ax, az)
Expand All @@ -764,166 +757,148 @@ def test_data_container_algebra(test, x, eps=1e-5):

y *= 0
x.minimum(z, out=y)
ax = x.as_array()
ay = y.as_array()
az = z.as_array()
ay -= numpy.minimum(ax, az)
s = numpy.linalg.norm(ay)
test.check_if_equal(0, s)

y = x.minimum(0)
ax = x.as_array()
ay = y.as_array()
ay -= numpy.minimum(ax, 0)
s = numpy.linalg.norm(ay)
test.check_if_equal(0, s)

y *= 0
x.minimum(0, out=y)
ax = x.as_array()
ay = y.as_array()
ay -= numpy.minimum(ax, 0)
s = numpy.linalg.norm(ay)
test.check_if_equal(0, s)

y = x.exp()
ax = x.as_array()
ay = y.as_array()
ay -= numpy.exp(ax)
s = numpy.linalg.norm(ay)
t = y.norm()
test.check_if_equal(1, s <= eps * t)
test.check_if_zero_within_tolerance(s, eps * t)

y *= 0
x.exp(out=y)
ax = x.as_array()
ay = y.as_array()
ay -= numpy.exp(ax)
s = numpy.linalg.norm(ay)
t = y.norm()
test.check_if_equal(1, s <= eps * t)
test.check_if_zero_within_tolerance(s, eps * t)

y = x.log()
ax = x.as_array()
ay = y.as_array()
az = numpy.log(ax)
numpy.nan_to_num(ay, copy=False, posinf=0.0, neginf=0.0)
numpy.nan_to_num(az, copy=False, posinf=0.0, neginf=0.0)
ay -= az
s = numpy.linalg.norm(ay)
t = numpy.linalg.norm(az)
test.check_if_equal(1, s <= eps * t)
test.check_if_zero_within_tolerance(s, eps * t)

y *= 0
x.log(out=y)
ax = x.as_array()
ay = y.as_array()
az = numpy.log(ax)
numpy.nan_to_num(ay, copy=False, posinf=0.0, neginf=0.0)
numpy.nan_to_num(az, copy=False, posinf=0.0, neginf=0.0)
ay -= az
s = numpy.linalg.norm(ay)
t = numpy.linalg.norm(az)
test.check_if_equal(1, s <= eps * t)
test.check_if_zero_within_tolerance(s, eps * t)

y = x.sqrt()
ax = x.as_array()
ay = y.as_array()
ay -= numpy.sqrt(ax)
s = numpy.linalg.norm(ay)
t = y.norm()
test.check_if_equal(1, s <= eps * t)
test.check_if_zero_within_tolerance(s, eps * t)

y *= 0
x.sqrt(out=y)
ax = x.as_array()
ay = y.as_array()
ay -= numpy.sqrt(ax)
s = numpy.linalg.norm(ay)
t = y.norm()
test.check_if_equal(1, s <= eps * t)
test.check_if_zero_within_tolerance(s, eps * t)

y = x.sign()
ax = x.as_array()
ay = y.as_array()
ay -= numpy.sign(ax)
s = numpy.linalg.norm(ay)
t = y.norm()
test.check_if_equal(1, s <= eps * t)
test.check_if_zero_within_tolerance(s, eps * t)

y *= 0
x.sign(out=y)
ax = x.as_array()
ay = y.as_array()
ay -= numpy.sign(ax)
s = numpy.linalg.norm(ay)
t = y.norm()
test.check_if_equal(1, s <= eps * t)
test.check_if_zero_within_tolerance(s, eps * t)

y = x.abs()
ax = x.as_array()
ay = y.as_array()
ay -= numpy.abs(ax)
s = numpy.linalg.norm(ay)
t = y.norm()
test.check_if_equal(1, s <= eps * t)
test.check_if_zero_within_tolerance(s, eps * t)

y *= 0
x.abs(out=y)
ax = x.as_array()
ay = y.as_array()
ay -= numpy.abs(ax)
s = numpy.linalg.norm(ay)
t = y.norm()
test.check_if_equal(1, s <= eps * t)
test.check_if_zero_within_tolerance(s, eps * t)

p = -0.5
z = x.power(p)
ax = x.as_array()
az = z.as_array()
numpy.nan_to_num(az, copy=False, posinf=0.0, neginf=0.0)
t = numpy.linalg.norm(az)
az -= numpy.power(ax, p)
numpy.nan_to_num(az, copy=False, posinf=0.0, neginf=0.0)
s = numpy.linalg.norm(az)
test.check_if_equal(1, s <= eps * t)
test.check_if_zero_within_tolerance(s, eps * t)

z *= 0
x.power(p, out=z)
ax = x.as_array()
az = z.as_array()
numpy.nan_to_num(az, copy=False, posinf=0.0, neginf=0.0)
t = numpy.linalg.norm(az)
az -= numpy.power(ax, p)
numpy.nan_to_num(az, copy=False, posinf=0.0, neginf=0.0)
s = numpy.linalg.norm(az)
test.check_if_equal(1, s <= eps * t)
test.check_if_zero_within_tolerance(s, eps * t)

ax = x.as_array()
ay = -numpy.ones_like(ax)/2
y.fill(ay)
z = x.power(y)
ax = x.as_array()
ay = y.as_array()
az = z.as_array()
numpy.nan_to_num(az, copy=False, posinf=0.0, neginf=0.0)
t = numpy.linalg.norm(az)
az -= numpy.power(ax, ay)
numpy.nan_to_num(az, copy=False, posinf=0.0, neginf=0.0)
s = numpy.linalg.norm(az)
test.check_if_equal(1, s <= eps * t)
test.check_if_zero_within_tolerance(s, eps * t)

z *= 0
x.power(y, out=z)
ax = x.as_array()
ay = y.as_array()
az = z.as_array()
numpy.nan_to_num(az, copy=False, posinf=0.0, neginf=0.0)
t = numpy.linalg.norm(az)
az -= numpy.power(ax, ay)
numpy.nan_to_num(az, copy=False, posinf=0.0, neginf=0.0)
s = numpy.linalg.norm(az)
test.check_if_equal(1, s <= eps * t)
test.check_if_zero_within_tolerance(s, eps * t)


class DataContainerAlgebraTests(object):
Expand Down
34 changes: 27 additions & 7 deletions src/xSTIR/cSTIR/include/sirf/STIR/stir_data_containers.h
Original file line number Diff line number Diff line change
Expand Up @@ -249,7 +249,11 @@ namespace sirf {
if (_is_empty != -1)
return _is_empty ? 0 : 1;
try {
get_segment_by_sinogram(0);
#ifdef STIR_TOF
get_segment_by_sinogram(0,0);
#else
get_segment_by_sinogram(0);
#endif
}
catch (...) {
_is_empty = 1;
Expand Down Expand Up @@ -404,16 +408,32 @@ namespace sirf {
{
return data()->get_max_segment_num();
}
#ifdef STIR_TOF
stir::SegmentBySinogram<float>
get_segment_by_sinogram(const int segment_num) const
get_segment_by_sinogram(const int segment_num, const int timing_pos_num) const
{
return data()->get_segment_by_sinogram(segment_num);
}
return data()->get_segment_by_sinogram(segment_num, timing_pos_num);
}
#else
stir::SegmentBySinogram<float>
get_empty_segment_by_sinogram(const int segment_num) const
get_segment_by_sinogram(const int segment_num) const
{
return data()->get_empty_segment_by_sinogram(segment_num);
}
return data()->get_segment_by_sinogram(segment_num);
}
#endif
#ifdef STIR_TOF
stir::SegmentBySinogram<float>
get_empty_segment_by_sinogram(const int segment_num, const int timing_pos_num) const
{
return data()->get_empty_segment_by_sinogram(segment_num, false, timing_pos_num);
}
#else
stir::SegmentBySinogram<float>
get_empty_segment_by_sinogram(const int segment_num) const
{
return data()->get_empty_segment_by_sinogram(segment_num);
}
#endif
void set_segment(const stir::SegmentBySinogram<float>& s)
{
if (data()->set_segment(s) != stir::Succeeded::yes)
Expand Down
Loading
Loading