-
Notifications
You must be signed in to change notification settings - Fork 2
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
example notebook #2
Closed
Closed
Changes from all commits
Commits
Show all changes
6 commits
Select commit
Hold shift + click to select a range
123df73
added example and readme
paskino d3ba088
added docs
paskino a461324
update to use the new filter machinery
paskino b4015df
added example on NEMA IQ data with CIL recon
paskino 29d3682
added latest version
paskino 3bfbe68
Working SGD example with metrics and SIRF objective functions
paskino File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,284 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "21a12036-3da1-42a8-9952-9693b8291f05", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import os\n", | ||
"from sirf import STIR as pet\n", | ||
"from sirf.contrib.partitioner import partitioner\n", | ||
"\n", | ||
"from cil.optimisation.functions import SGFunction\n", | ||
"from cil.optimisation.algorithms import GD\n", | ||
"from cil.optimisation.utilities import Sampler, ConstantStepSize\n", | ||
"from cil.optimisation.utilities.callbacks import ProgressCallback\n", | ||
"\n", | ||
"from img_quality_cil_stir import ImageQualityCallback\n", | ||
"\n", | ||
"\n", | ||
"# engine's messages go to files, except error messages, which go to stdout\n", | ||
"_ = pet.MessageRedirector('info.txt', 'warn.txt')\n", | ||
"# Needed for get_subsets()\n", | ||
"pet.AcquisitionData.set_storage_scheme('memory')\n", | ||
"# fewer message from STIR and SIRF\n", | ||
"pet.set_verbosity(0)\n", | ||
"\n", | ||
"def initial_OSEM(acquired_data, additive_term, mult_factors, initial_image):\n", | ||
" num_subsets = 1\n", | ||
" data, acq_models, obj_funs = partitioner.data_partition(acquired_data, additive_term, mult_factors, num_subsets)\n", | ||
"\n", | ||
" obj_fun = pet.make_Poisson_loglikelihood(data[0])\n", | ||
" obj_fun.set_acquisition_model(acq_models[0])\n", | ||
" recon = pet.OSMAPOSLReconstructor()\n", | ||
" recon.set_objective_function(obj_fun)\n", | ||
" recon.set_current_estimate(initial_image)\n", | ||
" # some arbitrary numbers here\n", | ||
" recon.set_num_subsets(2)\n", | ||
" num_subiters = 14\n", | ||
" recon.set_num_subiterations(num_subiters)\n", | ||
" recon.set_up(initial_image)\n", | ||
" recon.process()\n", | ||
" return recon.get_output()\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "fc7ea384-a57a-42a6-8f35-4fe9826279e6", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"def construct_RDP(penalty_strength, initial_image, kappa, max_scaling=1e-3):\n", | ||
" '''\n", | ||
" Construct the Relative Difference Prior (RDP)\n", | ||
" \n", | ||
" WARNING: return prior with beta/num_subsets (as currently needed for BSREM implementations)\n", | ||
" '''\n", | ||
" prior = pet.RelativeDifferencePrior()\n", | ||
" # need to make it differentiable\n", | ||
" epsilon = initial_image.max() * max_scaling\n", | ||
" prior.set_epsilon(epsilon)\n", | ||
" prior.set_penalisation_factor(penalty_strength)\n", | ||
" prior.set_kappa(kappa)\n", | ||
" prior.set_up(initial_image)\n", | ||
" return prior\n", | ||
" \n", | ||
"def add_prior(prior, objective_functions):\n", | ||
" '''Add prior evenly to every objective function.\n", | ||
" \n", | ||
" WARNING: it modifies the objective functions'''\n", | ||
" for f in objective_functions:\n", | ||
" f.set_prior(prior) " | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "6b5020bc-a42c-455f-89de-dbedc928dffb", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# https://github.com/SyneRBI/PETRIC/blob/recon_with_metrics/metrics/NEMA-IQ-CIL.ipynb\n", | ||
"import tensorboardX\n", | ||
"from datetime import datetime\n", | ||
"import numpy as np\n", | ||
"# create a tensorboardX summary writer\n", | ||
"dt_string = datetime.now().strftime(\"%Y%m%d-%H%M%S\")\n", | ||
"tb_summary_writer = tensorboardX.SummaryWriter(f'recons/exp-{dt_string}')\n", | ||
"def MSE(x,y):\n", | ||
" \"\"\" mean squared error between two numpy arrays\n", | ||
" \"\"\"\n", | ||
" return ((x-y)**2).mean()\n", | ||
"\n", | ||
"def MAE(x,y):\n", | ||
" \"\"\" mean absolute error between two numpy arrays\n", | ||
" \"\"\"\n", | ||
" return np.abs(x-y).mean()\n", | ||
"\n", | ||
"def PSNR(x, y, scale = None):\n", | ||
" \"\"\" peak signal to noise ratio between two numpy arrays x and y\n", | ||
" y is considered to be the reference array and the default scale\n", | ||
" needed for the PSNR is assumed to be the max of this array\n", | ||
" \"\"\"\n", | ||
" \n", | ||
" mse = ((x-y)**2).mean()\n", | ||
" \n", | ||
" if scale == None:\n", | ||
" scale = y.max()\n", | ||
" \n", | ||
" return 10*np.log10((scale**2) / mse)\n", | ||
"\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "e2002475-9d52-4795-b9f3-61bec44eb748", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"os.chdir('/home/jovyan/work/Challenge24/data')" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "fe04a664-e85b-4a1b-a299-3812d8d22c6b", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"acquired_data = pet.AcquisitionData('prompts.hs')\n", | ||
"\n", | ||
"additive_term = pet.AcquisitionData('additive.hs')\n", | ||
"\n", | ||
"mult_factors = pet.AcquisitionData('multfactors.hs')\n", | ||
"\n", | ||
"initial_image = pet.ImageData('OSEM_image.hv')\n", | ||
"osem_sol = initial_image\n", | ||
"# This should be an image to give voxel-dependent weights \n", | ||
"# (here predetermined as the row-sum of the Hessian of the log-likelihood at an initial OSEM reconstruction, see eq. 25 in [7])\n", | ||
"kappa = initial_image.allocate(1.)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "8e53cf71-21b7-47e4-97c9-8c98ec045b59", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# load the ROIs\n", | ||
"\n", | ||
"ground_truth = initial_image\n", | ||
"roi_image_dict = {\n", | ||
" 'S1': pet.ImageData('S1.hv'),\n", | ||
" 'S2': pet.ImageData('S2.hv'),\n", | ||
" 'S3': pet.ImageData('S3.hv'),\n", | ||
" 'S4': pet.ImageData('S4.hv'),\n", | ||
" 'S5': pet.ImageData('S5.hv'),\n", | ||
" 'S6': pet.ImageData('S6.hv'),\n", | ||
" 'S7': pet.ImageData('S7.hv'),\n", | ||
"}\n", | ||
"# instantiate ImageQualityCallback\n", | ||
"img_qual_callback = ImageQualityCallback(ground_truth, tb_summary_writer,\n", | ||
" roi_mask_dict = roi_image_dict,\n", | ||
" metrics_dict = {'MSE':MSE, \n", | ||
" 'MAE':MAE, \n", | ||
" 'PSNR':PSNR},\n", | ||
" statistics_dict = {'MEAN': (lambda x: x.mean()),\n", | ||
" 'STDDEV': (lambda x: x.std()),\n", | ||
" 'MAX': (lambda x: x.max()),\n", | ||
" 'COM': (lambda x: np.array([3,2,1]))},\n", | ||
" )\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "1613c02e-6475-4d3b-9ffb-82bc703ed115", | ||
"metadata": {}, | ||
"source": [ | ||
"## Using SIRF Objective Functions" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "38959d1d-4694-4369-b317-2dc8088216e0", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"num_subsets = 7\n", | ||
"data, acq_models, obj_funs = partitioner.data_partition(acquired_data, additive_term, mult_factors, num_subsets, mode='staggered', initial_image=initial_image)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "ba81c1b4-3714-4c34-89d6-e5a745ec9470", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"\n", | ||
"# add RDP prior to the objective functions\n", | ||
"step_size = 1e-7\n", | ||
"add_regulariser = True\n", | ||
"if add_regulariser:\n", | ||
" alpha = 500\n", | ||
" prior = construct_RDP(alpha, initial_image, kappa)\n", | ||
" # epsilon = initial_image.max()*1e-4\n", | ||
" # prior = add_RDP(alpha, epsilon, obj_funs)\n", | ||
" add_prior(prior, obj_funs)\n", | ||
" step_size = 1e-10" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "69b2fde4-7d03-4342-9ec7-3ed0360604b0", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"#set up and run the gradient descent algorithm\n", | ||
"\n", | ||
"sampler = Sampler.random_without_replacement(len(obj_funs))\n", | ||
"# requires a minus sign for CIL's algorithm as they are minimisers\n", | ||
"F = - SGFunction(obj_funs, sampler=sampler)\n", | ||
"# ISTA default step_size is 0.99*2.0/F.L\n", | ||
"step_size_rule = ConstantStepSize(step_size)\n", | ||
"\n", | ||
"alg = GD(initial=initial_image, objective_function=F, step_size=step_size_rule)" | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Not using ISTA here, but GD. Please change and add positivity constraint |
||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "26477d50-ac4e-4f11-af08-b873bb417597", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"alg.run(10, callbacks=[img_qual_callback, ProgressCallback()])" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "0dded5f8-3bae-46aa-868f-452e0e5bd763", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from cil.utilities.display import show2D \n", | ||
"cmax = .15\n", | ||
"im_slice = 70\n", | ||
"osem_sol = initial_image\n", | ||
"show2D([osem_sol.as_array()[im_slice,:,:], \n", | ||
" alg.solution.as_array()[im_slice,:,:]], \n", | ||
" title=['OSEM',f\"{alg.__class__.__name__} epoch {alg.iteration/num_subsets}\"], \n", | ||
" cmap=\"PuRd\", fix_range=[(0, 0.2),(0,0.2)], origin='upper-left')" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3 (ipykernel)", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.10.14" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
will have to be replaced after merging #20