Skip to content

Commit

Permalink
Merge pull request #112 from SyneRBI/gpu-libs
Browse files Browse the repository at this point in the history
install pytorch-cuda & tensorflow-gpu
  • Loading branch information
casperdcl authored Sep 25, 2024
2 parents 49ac42e + 08e6ff0 commit 00bc800
Showing 1 changed file with 9 additions and 9 deletions.
18 changes: 9 additions & 9 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -29,13 +29,10 @@ Additional dependencies may be specified via `apt.txt`, `environment.yml`, and/o

```yml
name: winning-submission
channels: [conda-forge, pytorch, nvidia]
channels: [conda-forge, nvidia]
dependencies:
- cupy
- cuda-version =11.8
- pytorch-cuda =11.8
- tensorflow-gpu
- cudatoolkit =11.8.0
- pip
- pip:
- git+https://github.com/MyResearchGroup/prize-winning-algos
Expand All @@ -45,8 +42,6 @@ Additional dependencies may be specified via `apt.txt`, `environment.yml`, and/o

```txt
cupy-cuda11x
torch --index-url https://download.pytorch.org/whl/cu118
tensorflow[and-cuda]
git+https://github.com/MyResearchGroup/prize-winning-algos
```

Expand All @@ -68,11 +63,16 @@ The organisers will execute (after installing [nvidia-docker](https://docs.nvidi
docker run --rm -it --gpus all -p 6006:6006 \
-v /path/to/data:/mnt/share/petric:ro \
-v .:/workdir -w /workdir synerbi/sirf:edge-gpu /bin/bash
# 3. optionally, conda/pip/apt install environment.yml/requirements.txt/apt.txt
# 4. install metrics & run your submission
# 3. install metrics & GPU libraries
conda install monai tensorboard tensorboardx jupytext cudatoolkit=11.8
pip uninstall torch # monai installs pytorch (CPU), so remove it
pip install tensorflow[and-cuda]==2.14 # last to support cu118
pip install torch --index-url https://download.pytorch.org/whl/cu118
pip install git+https://github.com/TomographicImaging/Hackathon-000-Stochastic-QualityMetrics
# 4. optionally, conda/pip/apt install environment.yml/requirements.txt/apt.txt
# 5. run your submission
python petric.py &
# 5. optionally, serve logs at <http://localhost:6006>
# 6. optionally, serve logs at <http://localhost:6006>
tensorboard --bind_all --port 6006 --logdir ./output
```

Expand Down

0 comments on commit 00bc800

Please sign in to comment.