WAGL: Extreme Weather Adaptive Method for Robust and Generalizable UAV-based Cross-View Geo-localization
UAVs in Multimedia: Capturing the World from a New Perspective. This repository is the code for our paper WAGL: Extreme Weather Adaptive Method for Robust and Generalizable UAV-based Cross-View Geo-localization, Thank you for your kindly attention.
- Download the University-1652-WX dataset
- Prepare Data Folder
├── University-1652/
│ ├── readme.txt
│ ├── train/
│ ├── drone/ /* drone-view training images
│ ├── 0001
| ├── 0002
| ...
│ ├── street/ /* street-view training images
│ ├── satellite/ /* satellite-view training images
│ ├── google/ /* noisy street-view training images (collected from Google Image)
│ ├── test/
│ ├── query_drone/
│ ├── gallery_drone/
│ ├── query_street/
│ ├── gallery_street/
│ ├── query_satellite/
│ ├── gallery_satellite/
│ ├── 4K_drone/
You can download the trained embedding files (.mat)from the following link.
We provide scripts to complete TriSSA training and testing
- Change the data_dir and test_dir paths and then run:
python train.py --gpu_ids 0 --name traied_model_name --train_all --batchsize 32 --data_dir your_data_path
python test.py --gpu_ids 0 --name traied_model_name --test_dir your_data_path --batchsize 32 --which_epoch 120
Or simplely just try to run
python run_commond.py
The subbmit files for UAVM are in the dictionary acmm_files
python acmm2024_subbmit.py # generate txt file for subbmit
python post_process.py # ensemble different models
- Zhedong Zheng, University-1652: A Multi-view Multi-source Benchmark for Drone-based Geo-localization
- Xuanmeng Zhang, Understanding Image Retrieval Re-Ranking: A Graph Neural Network Perspective
If you find our work helpful, please cite:
@inproceedings{sun2024wagl,
title={WAGL: Extreme Weather Adaptive Method for Robust and Generalizable UAV-based Cross-View Geo-localization},
author={Sun, Jian and Jiang, Xinyu and Xu, Xin and Vong, Chi-Man},
booktitle={Proceedings of the 2nd Workshop on UAVs in Multimedia: Capturing the World from a New Perspective},
pages={14--18},
year={2024}
}
@inproceedings{zheng2020university,
title={University-1652: A multi-view multi-source benchmark for drone-based geo-localization},
author={Zheng, Zhedong and Wei, Yunchao and Yang, Yi},
booktitle={Proceedings of the 28th ACM international conference on Multimedia},
pages={1395--1403},
year={2020}
}
@article{wang2024multiple,
title={Multiple-environment Self-adaptive Network for Aerial-view Geo-localization},
author={Wang, Tingyu and Zheng, Zhedong and Sun, Yaoqi and Yan, Chenggang and Yang, Yi and Chua, Tat-Seng},
journal={Pattern Recognition},
volume={152},
pages={110363},
year={2024},
publisher={Elsevier}
}