Skip to content

Latest commit

 

History

History
74 lines (61 loc) · 8.72 KB

README.md

File metadata and controls

74 lines (61 loc) · 8.72 KB

numpy

CONTAINERS IMAGES RUN BUILD

CONTAINERS
numpy
   Builds numpy_jp46 numpy_jp51 numpy_jp60
   Requires L4T >=32.6
   Dependencies build-essential python
   Dependants audiocraft auto_gptq awq awq:dev bitsandbytes cuda-python cudf:21.10.02 cudf:23.10.03 cuml cupy deepstream efficientvit exllama:v1 exllama:v2 faiss faiss:lite faster-whisper gptq-for-llama gstreamer jetson-inference jetson-utils jupyterlab l4t-diffusion l4t-ml l4t-pytorch l4t-tensorflow:tf1 l4t-tensorflow:tf2 l4t-text-generation langchain langchain:samples llama_cpp:ggml llama_cpp:gguf llamaspeak llava local_llm minigpt4 mlc:51fb0f4 mlc:9bf5723 mlc:dev nanodb nanoowl nanosam nemo numba onnx onnxruntime opencv:4.5.0 opencv:4.8.1 optimum pycuda pytorch:1.10 pytorch:1.11 pytorch:1.12 pytorch:1.13 pytorch:1.9 pytorch:2.0 pytorch:2.0-distributed pytorch:2.1 pytorch:2.1-builder pytorch:2.1-distributed raft ros:foxy-desktop ros:foxy-ros-base ros:foxy-ros-core ros:galactic-desktop ros:galactic-ros-base ros:galactic-ros-core ros:humble-desktop ros:humble-ros-base ros:humble-ros-core ros:iron-desktop ros:iron-ros-base ros:iron-ros-core ros:noetic-desktop ros:noetic-ros-base ros:noetic-ros-core sam stable-diffusion stable-diffusion-webui tam tensorflow tensorflow2 text-generation-inference text-generation-webui:1.7 text-generation-webui:6a7cd01 text-generation-webui:main torch2trt torch_tensorrt torchaudio torchvision transformers transformers:git transformers:nvgpt tvm whisper whisperx xformers
   Dockerfile Dockerfile
   Images dustynv/numpy:r32.7.1 (2023-12-05, 0.4GB)
dustynv/numpy:r35.2.1 (2023-09-07, 5.0GB)
dustynv/numpy:r35.3.1 (2023-12-05, 5.0GB)
dustynv/numpy:r35.4.1 (2023-10-07, 5.0GB)
dustynv/numpy:r36.2.0 (2023-12-06, 0.2GB)
CONTAINER IMAGES
Repository/Tag Date Arch Size
  dustynv/numpy:r32.7.1 2023-12-05 arm64 0.4GB
  dustynv/numpy:r35.2.1 2023-09-07 arm64 5.0GB
  dustynv/numpy:r35.3.1 2023-12-05 arm64 5.0GB
  dustynv/numpy:r35.4.1 2023-10-07 arm64 5.0GB
  dustynv/numpy:r36.2.0 2023-12-06 arm64 0.2GB

Container images are compatible with other minor versions of JetPack/L4T:
    • L4T R32.7 containers can run on other versions of L4T R32.7 (JetPack 4.6+)
    • L4T R35.x containers can run on other versions of L4T R35.x (JetPack 5.1+)

RUN CONTAINER

To start the container, you can use the run.sh/autotag helpers or manually put together a docker run command:

# automatically pull or build a compatible container image
./run.sh $(./autotag numpy)

# or explicitly specify one of the container images above
./run.sh dustynv/numpy:r36.2.0

# or if using 'docker run' (specify image and mounts/ect)
sudo docker run --runtime nvidia -it --rm --network=host dustynv/numpy:r36.2.0

run.sh forwards arguments to docker run with some defaults added (like --runtime nvidia, mounts a /data cache, and detects devices)
autotag finds a container image that's compatible with your version of JetPack/L4T - either locally, pulled from a registry, or by building it.

To mount your own directories into the container, use the -v or --volume flags:

./run.sh -v /path/on/host:/path/in/container $(./autotag numpy)

To launch the container running a command, as opposed to an interactive shell:

./run.sh $(./autotag numpy) my_app --abc xyz

You can pass any options to run.sh that you would to docker run, and it'll print out the full command that it constructs before executing it.

BUILD CONTAINER

If you use autotag as shown above, it'll ask to build the container for you if needed. To manually build it, first do the system setup, then run:

./build.sh numpy

The dependencies from above will be built into the container, and it'll be tested during. See ./build.sh --help for build options.