Skip to content

Latest commit

 

History

History
 
 

pytorch

pytorch

CONTAINERS IMAGES RUN BUILD

Containers for PyTorch with CUDA support. Note that the l4t-pytorch containers also include PyTorch, torchvision, and torchaudio.

CONTAINERS
pytorch:2.1
   Aliases torch:2.1
   Builds pytorch-21_jp60 pytorch-21_jp51
   Requires L4T ==35.*
   Dependencies build-essential cuda cudnn python tensorrt numpy cmake onnx
   Dockerfile Dockerfile
   Images dustynv/pytorch:2.1-r35.2.1 (2023-12-11, 5.4GB)
dustynv/pytorch:2.1-r35.3.1 (2023-12-14, 5.4GB)
dustynv/pytorch:2.1-r35.4.1 (2023-11-05, 5.4GB)
dustynv/pytorch:2.1-r36.2.0 (2023-12-14, 7.2GB)
pytorch:2.0
   Aliases torch:2.0 pytorch torch
   Builds pytorch-20_jp51
   Requires L4T ==35.*
   Dependencies build-essential cuda cudnn python tensorrt numpy cmake onnx
   Dependants auto_gptq awq awq:dev bitsandbytes exllama:v1 exllama:v2 faiss:lite gptq-for-llama jetson-inference l4t-ml l4t-pytorch l4t-text-generation langchain langchain:samples llava local_llm minigpt4 mlc:51fb0f4 mlc:9bf5723 mlc:dev nanodb nanoowl nanosam nemo optimum raft sam stable-diffusion text-generation-inference text-generation-webui:1.7 text-generation-webui:6a7cd01 text-generation-webui:main torch2trt torch_tensorrt torchaudio torchvision transformers transformers:git transformers:nvgpt tvm whisper whisperx
   Dockerfile Dockerfile
   Images dustynv/pytorch:2.0-r35.2.1 (2023-12-06, 5.4GB)
dustynv/pytorch:2.0-r35.3.1 (2023-12-14, 5.4GB)
dustynv/pytorch:2.0-r35.4.1 (2023-10-07, 5.4GB)
pytorch:1.13
   Aliases torch:1.13
   Builds pytorch-113_jp51
   Requires L4T ==35.*
   Dependencies build-essential cuda cudnn python tensorrt numpy cmake onnx
   Dockerfile Dockerfile
   Images dustynv/pytorch:1.13-r35.2.1 (2023-08-29, 5.5GB)
dustynv/pytorch:1.13-r35.3.1 (2023-12-12, 5.5GB)
dustynv/pytorch:1.13-r35.4.1 (2023-12-14, 5.5GB)
pytorch:1.12
   Aliases torch:1.12
   Builds pytorch-112_jp51
   Requires L4T ==35.*
   Dependencies build-essential cuda cudnn python tensorrt numpy cmake onnx
   Dockerfile Dockerfile
   Images dustynv/pytorch:1.12-r35.2.1 (2023-12-14, 5.5GB)
dustynv/pytorch:1.12-r35.3.1 (2023-08-29, 5.5GB)
dustynv/pytorch:1.12-r35.4.1 (2023-11-03, 5.5GB)
pytorch:1.11
   Aliases torch:1.11
   Builds pytorch-111_jp51
   Requires L4T ==35.*
   Dependencies build-essential cuda cudnn python tensorrt numpy cmake onnx
   Dockerfile Dockerfile
   Images dustynv/pytorch:1.11-r35.2.1 (2023-11-05, 5.4GB)
dustynv/pytorch:1.11-r35.3.1 (2023-12-14, 5.4GB)
dustynv/pytorch:1.11-r35.4.1 (2023-12-11, 5.4GB)
pytorch:1.10
   Aliases torch:1.10 pytorch torch
   Builds pytorch-110_jp46
   Requires L4T ==32.*
   Dependencies build-essential cuda cudnn python tensorrt numpy cmake onnx
   Dockerfile Dockerfile
   Images dustynv/pytorch:1.10-r32.7.1 (2023-12-14, 1.1GB)
pytorch:1.9
   Aliases torch:1.9
   Builds pytorch-19_jp46
   Requires L4T ==32.*
   Dependencies build-essential cuda cudnn python tensorrt numpy cmake onnx
   Dockerfile Dockerfile
   Images dustynv/pytorch:1.9-r32.7.1 (2023-12-14, 1.0GB)
pytorch:2.0-distributed
   Aliases torch:2.0-distributed
   Requires L4T ==35.*
   Dependencies build-essential cuda cudnn python tensorrt numpy cmake onnx
   Dockerfile Dockerfile.builder
pytorch:2.1-distributed
   Aliases torch:2.1-distributed pytorch:distributed
   Requires L4T ==35.*
   Dependencies build-essential cuda cudnn python tensorrt numpy cmake onnx
   Dependants audiocraft efficientvit l4t-diffusion stable-diffusion-webui tam xformers
   Dockerfile Dockerfile.builder
pytorch:2.1-builder
   Aliases torch:2.1-builder
   Requires L4T ==36.*
   Dependencies build-essential cuda cudnn python tensorrt numpy cmake onnx
   Dockerfile Dockerfile.builder
CONTAINER IMAGES
Repository/Tag Date Arch Size
  dustynv/pytorch:1.10-r32.7.1 2023-12-14 arm64 1.1GB
  dustynv/pytorch:1.11-r35.2.1 2023-11-05 arm64 5.4GB
  dustynv/pytorch:1.11-r35.3.1 2023-12-14 arm64 5.4GB
  dustynv/pytorch:1.11-r35.4.1 2023-12-11 arm64 5.4GB
  dustynv/pytorch:1.12-r35.2.1 2023-12-14 arm64 5.5GB
  dustynv/pytorch:1.12-r35.3.1 2023-08-29 arm64 5.5GB
  dustynv/pytorch:1.12-r35.4.1 2023-11-03 arm64 5.5GB
  dustynv/pytorch:1.13-r35.2.1 2023-08-29 arm64 5.5GB
  dustynv/pytorch:1.13-r35.3.1 2023-12-12 arm64 5.5GB
  dustynv/pytorch:1.13-r35.4.1 2023-12-14 arm64 5.5GB
  dustynv/pytorch:1.9-r32.7.1 2023-12-14 arm64 1.0GB
  dustynv/pytorch:2.0-r35.2.1 2023-12-06 arm64 5.4GB
  dustynv/pytorch:2.0-r35.3.1 2023-12-14 arm64 5.4GB
  dustynv/pytorch:2.0-r35.4.1 2023-10-07 arm64 5.4GB
  dustynv/pytorch:2.1-r35.2.1 2023-12-11 arm64 5.4GB
  dustynv/pytorch:2.1-r35.3.1 2023-12-14 arm64 5.4GB
  dustynv/pytorch:2.1-r35.4.1 2023-11-05 arm64 5.4GB
  dustynv/pytorch:2.1-r36.2.0 2023-12-14 arm64 7.2GB

Container images are compatible with other minor versions of JetPack/L4T:
    • L4T R32.7 containers can run on other versions of L4T R32.7 (JetPack 4.6+)
    • L4T R35.x containers can run on other versions of L4T R35.x (JetPack 5.1+)

RUN CONTAINER

To start the container, you can use the run.sh/autotag helpers or manually put together a docker run command:

# automatically pull or build a compatible container image
./run.sh $(./autotag pytorch)

# or explicitly specify one of the container images above
./run.sh dustynv/pytorch:2.1-r36.2.0

# or if using 'docker run' (specify image and mounts/ect)
sudo docker run --runtime nvidia -it --rm --network=host dustynv/pytorch:2.1-r36.2.0

run.sh forwards arguments to docker run with some defaults added (like --runtime nvidia, mounts a /data cache, and detects devices)
autotag finds a container image that's compatible with your version of JetPack/L4T - either locally, pulled from a registry, or by building it.

To mount your own directories into the container, use the -v or --volume flags:

./run.sh -v /path/on/host:/path/in/container $(./autotag pytorch)

To launch the container running a command, as opposed to an interactive shell:

./run.sh $(./autotag pytorch) my_app --abc xyz

You can pass any options to run.sh that you would to docker run, and it'll print out the full command that it constructs before executing it.

BUILD CONTAINER

If you use autotag as shown above, it'll ask to build the container for you if needed. To manually build it, first do the system setup, then run:

./build.sh pytorch

The dependencies from above will be built into the container, and it'll be tested during. See ./build.sh --help for build options.