PyTorch implementation of the paper "Super-Resolved q-Space Deep Learning" (MICCAI 2019, MedIA 2021)
- Pytorch
- numpy
- nibabel
- sklearn_extra
- Clone the repository
git clone https://github.com/Snailpong/dwi_angular.git
- Dataset download
-
Download from Human Connectome Project (HCP) Young Adult Database
-
Download
data.nii.gz, nodif_brain_mask.nii.gz, bval, bvec
files for each subject
- Preprocess data
-
python vector_scatter.py
: select index for extracting LR dimension (diffusion) -
python preprocess.py
: make h5 file for training and testing
- Train
-
python train.py
-
arguments
-
load_model:
True
/False
-
cuda_visible:
CUDA_VISIBLE_DEVICES
(e.g. 1) -
batch_size: set batch size
-
- Test
-
python test.py
-
arguments
-
load_model:
True
/False
-
cuda_visible:
CUDA_VISIBLE_DEVICES
(e.g. 1) -
image_path: set validation path
-