The official implementation of the CVPR 2022 paper Transformer Tracking with Cyclic Shifting Window Attention
[Models and Raw results] (Google Driver) or [Models and Raw results] (Baidu Driver: bsa2).
CSWinTT is a new transformer architecture with multi-scale cyclic shifting window attention for visual object tracking, elevating the attention from pixel to window level. The cross-window multi-scale attention has the advantage of aggregating attention at different scales and generates the best fine-scale match for the target object.
Tracker | UAV123 (AUC) | LaSOT (NP) | TrackingNet (NP) | GOT-10K (AO) |
---|---|---|---|---|
CSWinTT | 70.5 | 75.2 | 86.7 | 69.4 |
conda create -n cswintt python=3.7
conda activate cswintt
bash install.sh
Put the tracking datasets in ./data. It should look like:
${CSWinTT_ROOT}
-- data
-- lasot
|-- airplane
|-- basketball
|-- bear
...
-- got10k
|-- test
|-- train
|-- val
-- trackingnet
|-- TRAIN_0
|-- TRAIN_1
...
|-- TRAIN_11
|-- TEST
Run the following command to set paths for this project
python tracking/create_default_local_file.py --workspace_dir . --data_dir ./data --save_dir .
After running this command, you can also modify paths by editing these two files
lib/train/admin/local.py # paths about training
lib/test/evaluation/local.py # paths about testing
python tracking/train.py --script cswintt --config baseline_cs --save_dir . --mode single
python tracking/train.py --script cswintt_cls --config baseline_cs --save_dir . --mode single --script_prv cswintt --config_prv baseline_cs
Download the model and put it in output/checkpoints
- UAV123
python tracking/test.py cswintt baseline_cs --dataset uav --threads 32
- LaSOT
python tracking/test.py cswintt baseline_cs --dataset lasot --threads 32
- GOT10K-test
python tracking/test.py cswintt baseline_got10k_only --dataset got10k_test --threads 32
- TrackingNet
python tracking/test.py cswintt baseline_cs --dataset trackingnet --threads 32
The trained models and the raw tracking results are provided in the [Models and Raw results] (Google Driver) or [Models and Raw results] (Baidu Driver: bsa2).
Zikai Song: [email protected]
- Thanks for the PyTracking Library and STARK Library, which helps us to quickly implement our ideas.