Skip to content

SkyTNT/anime-segmentation

Repository files navigation

Anime Segmentation

Segmentation for anime character

Online Demo

Integrated into Huggingface Spaces 🤗 using Gradio. Try it out Hugging Face Spaces

Support Models

ISNet, U2Net, MODNet, InSPyReNet

Download Trained Models

Models can be downloaded here

Requirements

You need to install pytorch first

Then pip install -r requirements.txt

Train

python train.py --net isnet_is --data-dir path/to/dataset --epoch 1000 --batch-size-train 10 --batch-size-val 4 --workers-train 10 --workers-val 5 --acc-step 3 --benchmark --log-step 10 --val-epoch 3 --img-size 1024

detail

arguments:
  -h, --help            show this help message and exit
  --net {isnet_is,isnet,u2net,u2netl,modnet,inspyrnet_res,inspyrnet_swin}
                        isnet_is: Train ISNet with intermediate feature supervision,
                        isnet: Train ISNet,
                        u2net: Train U2Net full,
                        u2netl: Train U2Net lite,
                        modnet: Train MODNet
                        inspyrnet_res: Train InSPyReNet_Res2Net50
                        inspyrnet_swin: Train InSPyReNet_SwinB
  --pretrained-ckpt PRETRAINED_CKPT
                        load form pretrained ckpt of net
  --resume-ckpt RESUME_CKPT
                        resume training from ckpt
  --img-size IMG_SIZE   image size for training and validation,
                        1024 recommend for ISNet,
                        384 recommend for InSPyReNet,
                        640 recommend for others,

  --data-dir DATA_DIR   root dir of dataset
  --fg-dir FG_DIR       relative dir of foreground
  --bg-dir BG_DIR       relative dir of background
  --img-dir IMG_DIR     relative dir of images
  --mask-dir MASK_DIR   relative dir of masks
  --fg-ext FG_EXT       extension name of foreground
  --bg-ext BG_EXT       extension name of background
  --img-ext IMG_EXT     extension name of images
  --mask-ext MASK_EXT   extension name of masks
  --data-split DATA_SPLIT
                        split rate for training and validation
  
  --lr LR               learning rate
  --epoch EPOCH         epoch num
  --gt-epoch GT_EPOCH   epoch for training ground truth encoder when net is isnet_is
  --batch-size-train BATCH_SIZE_TRAIN
                        batch size for training
  --batch-size-val BATCH_SIZE_VAL
                        batch size for val
  --workers-train WORKERS_TRAIN
                        workers num for training dataloader
  --workers-val WORKERS_VAL
                        workers num for validation dataloader
  --acc-step ACC_STEP   gradient accumulation step
  --accelerator {cpu,gpu,tpu,ipu,hpu,auto}
                        accelerator
  --devices DEVICES     devices num
  --fp32                disable mix precision
  --benchmark           enable cudnn benchmark
  --log-step LOG_STEP   log training loss every n steps
  --val-epoch VAL_EPOCH
                        valid and save every n epoch
  --cache-epoch CACHE_EPOCH
                        update cache every n epoch
  --cache CACHE         ratio (cache to entire training dataset), higher
                        value require more memory, set 0 to disable cache

Inference

python inference.py --net isnet_is --ckpt path/to/isnet_is.ckpt --data-dir path/to/input_data --out out --img-size 1024 --only-matted

Export model

python export.py --net isnet_is --ckpt path/to/isnet_is.ckpt --to onnx --out isnet.onnx --img-size 1024

Dataset

This dataset is a combined dataset of AniSeg and character_bg_seg_data.

I clean the dataset using DeepDanbooru first then manually, to make sue all mask is anime character.

download

git lfs install
git clone https://huggingface.co/datasets/skytnt/anime-segmentation
cd anime-segmentation
unzip -q 'data/*.zip'

About

high-accuracy segmentation for anime character

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages